These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 30290828)
1. Decoding the role of TET family dioxygenases in lineage specification. Wu X; Li G; Xie R Epigenetics Chromatin; 2018 Oct; 11(1):58. PubMed ID: 30290828 [TBL] [Abstract][Full Text] [Related]
2. TET Family of Dioxygenases: Crucial Roles and Underlying Mechanisms. Li D; Guo B; Wu H; Tan L; Lu Q Cytogenet Genome Res; 2015; 146(3):171-80. PubMed ID: 26302812 [TBL] [Abstract][Full Text] [Related]
3. DNA methylation and hydroxymethylation in hematologic differentiation and transformation. Ko M; An J; Rao A Curr Opin Cell Biol; 2015 Dec; 37():91-101. PubMed ID: 26595486 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in Coprinopsis cinerea. Chavez L; Huang Y; Luong K; Agarwal S; Iyer LM; Pastor WA; Hench VK; Frazier-Bowers SA; Korol E; Liu S; Tahiliani M; Wang Y; Clark TA; Korlach J; Pukkila PJ; Aravind L; Rao A Proc Natl Acad Sci U S A; 2014 Dec; 111(48):E5149-58. PubMed ID: 25406324 [TBL] [Abstract][Full Text] [Related]
5. TET proteins and 5-methylcytosine oxidation in hematological cancers. Ko M; An J; Pastor WA; Koralov SB; Rajewsky K; Rao A Immunol Rev; 2015 Jan; 263(1):6-21. PubMed ID: 25510268 [TBL] [Abstract][Full Text] [Related]
6. TET Enzymes in the Immune System: From DNA Demethylation to Immunotherapy, Inflammation, and Cancer. López-Moyado IF; Ko M; Hogan PG; Rao A Annu Rev Immunol; 2024 Jun; 42(1):455-488. PubMed ID: 38360546 [TBL] [Abstract][Full Text] [Related]
7. TET methylcytosine oxidases: new insights from a decade of research. Lio CJ; Yue X; Lopez-Moyado IF; Tahiliani M; Aravind L; Rao A J Biosci; 2020; 45():. PubMed ID: 31965999 [TBL] [Abstract][Full Text] [Related]
8. Charting oxidized methylcytosines at base resolution. Wu H; Zhang Y Nat Struct Mol Biol; 2015 Sep; 22(9):656-61. PubMed ID: 26333715 [TBL] [Abstract][Full Text] [Related]
9. TET-mediated active DNA demethylation: mechanism, function and beyond. Wu X; Zhang Y Nat Rev Genet; 2017 Sep; 18(9):517-534. PubMed ID: 28555658 [TBL] [Abstract][Full Text] [Related]
10. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Ficz G; Branco MR; Seisenberger S; Santos F; Krueger F; Hore TA; Marques CJ; Andrews S; Reik W Nature; 2011 May; 473(7347):398-402. PubMed ID: 21460836 [TBL] [Abstract][Full Text] [Related]
11. Functions of TET Proteins in Hematopoietic Transformation. Han JA; An J; Ko M Mol Cells; 2015 Nov; 38(11):925-35. PubMed ID: 26552488 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms that regulate the activities of TET proteins. Joshi K; Liu S; Breslin S J P; Zhang J Cell Mol Life Sci; 2022 Jun; 79(7):363. PubMed ID: 35705880 [TBL] [Abstract][Full Text] [Related]
13. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Zhang X; Zhang Y; Wang C; Wang X Signal Transduct Target Ther; 2023 Aug; 8(1):297. PubMed ID: 37563110 [TBL] [Abstract][Full Text] [Related]
14. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. Zhang L; Chen W; Iyer LM; Hu J; Wang G; Fu Y; Yu M; Dai Q; Aravind L; He C J Am Chem Soc; 2014 Apr; 136(13):4801-4. PubMed ID: 24655109 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARK-AGE Study. Valentini E; Zampieri M; Malavolta M; Bacalini MG; Calabrese R; Guastafierro T; Reale A; Franceschi C; Hervonen A; Koller B; Bernhardt J; Slagboom PE; Toussaint O; Sikora E; Gonos ES; Breusing N; Grune T; Jansen E; Dollé ME; Moreno-Villanueva M; Sindlinger T; Bürkle A; Ciccarone F; Caiafa P Aging (Albany NY); 2016 Aug; 8(9):1896-1922. PubMed ID: 27587280 [TBL] [Abstract][Full Text] [Related]
16. TET family regulates the embryonic pluripotency of porcine preimplantation embryos by maintaining the DNA methylation level of Uh K; Ryu J; Farrell K; Wax N; Lee K Epigenetics; 2020 Nov; 15(11):1228-1242. PubMed ID: 32397801 [TBL] [Abstract][Full Text] [Related]
17. Epigenetic Regulation of Genomic Stability by Vitamin C. Brabson JP; Leesang T; Mohammad S; Cimmino L Front Genet; 2021; 12():675780. PubMed ID: 34017357 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of 5-carboxylcytosine during hepatic differentiation: Potential general role for active demethylation by DNA repair in lineage specification. Lewis LC; Lo PC; Foster JM; Dai N; Corrêa IR; Durczak PM; Duncan G; Ramsawhook A; Aithal GP; Denning C; Hannan NR; Ruzov A Epigenetics; 2017 Apr; 12(4):277-286. PubMed ID: 28267381 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of ten-eleven translocation hydroxylase family proteins and 5-hydroxymethylcytosine in oligodendrocyte differentiation. Zhao X; Dai J; Ma Y; Mi Y; Cui D; Ju G; Macklin WB; Jin W Glia; 2014 Jun; 62(6):914-26. PubMed ID: 24615693 [TBL] [Abstract][Full Text] [Related]
20. Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation. Lan Y; Banks KM; Pan H; Verma N; Dixon GR; Zhou T; Ding B; Elemento O; Chen S; Huangfu D; Evans T Cell Rep; 2021 Dec; 37(10):110095. PubMed ID: 34879277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]