BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 30290869)

  • 1. Oxidation of antimony (III) in soil by manganese (IV) oxide using X-ray absorption fine structure.
    Fu L; Shozugawa K; Matsuo M
    J Environ Sci (China); 2018 Nov; 73():31-37. PubMed ID: 30290869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide.
    Liu R; Xu W; He Z; Lan H; Liu H; Qu J; Prasai T
    Chemosphere; 2015 Nov; 138():616-24. PubMed ID: 26218341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review.
    Nakamaru YM; Altansuvd J
    Chemosphere; 2014 Sep; 111():366-71. PubMed ID: 24997941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling coupled kinetics of antimony adsorption/desorption and oxidation on manganese oxides.
    Shi Z; Peng S; Wang P; Sun Q; Wang Y; Lu G; Dang Z
    Environ Sci Process Impacts; 2018 Dec; 20(12):1691-1696. PubMed ID: 30283955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils.
    Vithanage M; Rajapaksha AU; Dou X; Bolan NS; Yang JE; Ok YS
    J Colloid Interface Sci; 2013 Sep; 406():217-24. PubMed ID: 23791229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. micro-XANES evidence for the reduction of Sb(V) to Sb(III) in soil from Sb mine tailing.
    Mitsunobu S; Takahashi Y; Terada Y
    Environ Sci Technol; 2010 Feb; 44(4):1281-7. PubMed ID: 20085342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the Chemical Form of Antimony on Soil Microbial Community Structure and Arsenite Oxidation Activity.
    Kataoka T; Mitsunobu S; Hamamura N
    Microbes Environ; 2018 Jul; 33(2):214-221. PubMed ID: 29887548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release of antimony from contaminated soil induced by redox changes.
    Hockmann K; Lenz M; Tandy S; Nachtegaal M; Janousch M; Schulin R
    J Hazard Mater; 2014 Jun; 275():215-21. PubMed ID: 24862348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of antimony behavior with that of arsenic under various soil redox conditions.
    Mitsunobu S; Harada T; Takahashi Y
    Environ Sci Technol; 2006 Dec; 40(23):7270-6. PubMed ID: 17180977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antimony sorption and transport mechanisms in removal experiment by Mn-coated biochar.
    Jia X; Zhou J; Liu J; Liu P; Yu L; Wen B; Feng Y
    Sci Total Environ; 2020 Jul; 724():138158. PubMed ID: 32247137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization mechanism of antimony by applying zirconium-manganese oxide in soil.
    Rong Q; Nong X; Zhang C; Zhong K; Zhao H
    Sci Total Environ; 2022 Jun; 823():153435. PubMed ID: 35092780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimonate Controls Manganese(II)-Induced Transformation of Birnessite at a Circumneutral pH.
    Karimian N; Hockmann K; Planer-Friedrich B; Johnston SG; Burton ED
    Environ Sci Technol; 2021 Jul; 55(14):9854-9863. PubMed ID: 34228928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of chemical form of antimony in contaminated soil around a smelter using X-ray absorption fine structure.
    Takaoka M; Fukutani S; Yamamoto T; Horiuchi M; Satta N; Takeda N; Oshita K; Yoneda M; Morisawa S; Tanaka T
    Anal Sci; 2005 Jul; 21(7):769-73. PubMed ID: 16038492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure.
    Guo X; Wu Z; He M; Meng X; Jin X; Qiu N; Zhang J
    J Hazard Mater; 2014 Jul; 276():339-45. PubMed ID: 24910911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimony oxidation and adsorption by in-situ formed biogenic Mn oxide and Fe-Mn oxides.
    Bai Y; Jefferson WA; Liang J; Yang T; Qu J
    J Environ Sci (China); 2017 Apr; 54():126-134. PubMed ID: 28391920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speciation of antimony in PET bottles produced in Japan and China by X-ray absorption fine structure spectroscopy.
    Takahashi Y; Sakuma K; Itai T; Zheng G; Mitsunobu S
    Environ Sci Technol; 2008 Dec; 42(24):9045-50. PubMed ID: 19174869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimony(III) removal by biogenic manganese oxides formed by Pseudomonas aeruginosa PA-1: kinetics and mechanisms.
    Li Q; He Y; Yang A; Hu X; Liu F; Mu J; Mei S; Yang LP
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):97102-97114. PubMed ID: 37584806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Iron(II) on Arsenic Sequestration by δ-MnO2: Desorption Studies Using Stirred-Flow Experiments and X-Ray Absorption Fine-Structure Spectroscopy.
    Wu Y; Li W; Sparks DL
    Environ Sci Technol; 2015 Nov; 49(22):13360-8. PubMed ID: 26477604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of aqueous Fe(II) on Sb(V) sorption on soil and goethite.
    Fan JX; Wang YJ; Fan TT; Dang F; Zhou DM
    Chemosphere; 2016 Mar; 147():44-51. PubMed ID: 26761596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.