These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 30290869)
1. Oxidation of antimony (III) in soil by manganese (IV) oxide using X-ray absorption fine structure. Fu L; Shozugawa K; Matsuo M J Environ Sci (China); 2018 Nov; 73():31-37. PubMed ID: 30290869 [TBL] [Abstract][Full Text] [Related]
2. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide. Liu R; Xu W; He Z; Lan H; Liu H; Qu J; Prasai T Chemosphere; 2015 Nov; 138():616-24. PubMed ID: 26218341 [TBL] [Abstract][Full Text] [Related]
3. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review. Nakamaru YM; Altansuvd J Chemosphere; 2014 Sep; 111():366-71. PubMed ID: 24997941 [TBL] [Abstract][Full Text] [Related]
4. Modeling coupled kinetics of antimony adsorption/desorption and oxidation on manganese oxides. Shi Z; Peng S; Wang P; Sun Q; Wang Y; Lu G; Dang Z Environ Sci Process Impacts; 2018 Dec; 20(12):1691-1696. PubMed ID: 30283955 [TBL] [Abstract][Full Text] [Related]
5. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils. Vithanage M; Rajapaksha AU; Dou X; Bolan NS; Yang JE; Ok YS J Colloid Interface Sci; 2013 Sep; 406():217-24. PubMed ID: 23791229 [TBL] [Abstract][Full Text] [Related]
6. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Karimian N; Burton ED; Johnston SG Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811 [TBL] [Abstract][Full Text] [Related]
7. micro-XANES evidence for the reduction of Sb(V) to Sb(III) in soil from Sb mine tailing. Mitsunobu S; Takahashi Y; Terada Y Environ Sci Technol; 2010 Feb; 44(4):1281-7. PubMed ID: 20085342 [TBL] [Abstract][Full Text] [Related]
8. Influence of the Chemical Form of Antimony on Soil Microbial Community Structure and Arsenite Oxidation Activity. Kataoka T; Mitsunobu S; Hamamura N Microbes Environ; 2018 Jul; 33(2):214-221. PubMed ID: 29887548 [TBL] [Abstract][Full Text] [Related]
9. Release of antimony from contaminated soil induced by redox changes. Hockmann K; Lenz M; Tandy S; Nachtegaal M; Janousch M; Schulin R J Hazard Mater; 2014 Jun; 275():215-21. PubMed ID: 24862348 [TBL] [Abstract][Full Text] [Related]
10. Fast and efficient remediation of antimony-contaminated surface water and field soil using alumina supported Fe-Mn binary oxide. Gong Y; Bai Y; Ye P; Li H Chemosphere; 2024 Sep; 364():143165. PubMed ID: 39181457 [TBL] [Abstract][Full Text] [Related]
11. Comparison of antimony behavior with that of arsenic under various soil redox conditions. Mitsunobu S; Harada T; Takahashi Y Environ Sci Technol; 2006 Dec; 40(23):7270-6. PubMed ID: 17180977 [TBL] [Abstract][Full Text] [Related]
12. The antimony sorption and transport mechanisms in removal experiment by Mn-coated biochar. Jia X; Zhou J; Liu J; Liu P; Yu L; Wen B; Feng Y Sci Total Environ; 2020 Jul; 724():138158. PubMed ID: 32247137 [TBL] [Abstract][Full Text] [Related]
13. Immobilization mechanism of antimony by applying zirconium-manganese oxide in soil. Rong Q; Nong X; Zhang C; Zhong K; Zhao H Sci Total Environ; 2022 Jun; 823():153435. PubMed ID: 35092780 [TBL] [Abstract][Full Text] [Related]
14. Antimonate Controls Manganese(II)-Induced Transformation of Birnessite at a Circumneutral pH. Karimian N; Hockmann K; Planer-Friedrich B; Johnston SG; Burton ED Environ Sci Technol; 2021 Jul; 55(14):9854-9863. PubMed ID: 34228928 [TBL] [Abstract][Full Text] [Related]
15. Determination of chemical form of antimony in contaminated soil around a smelter using X-ray absorption fine structure. Takaoka M; Fukutani S; Yamamoto T; Horiuchi M; Satta N; Takeda N; Oshita K; Yoneda M; Morisawa S; Tanaka T Anal Sci; 2005 Jul; 21(7):769-73. PubMed ID: 16038492 [TBL] [Abstract][Full Text] [Related]
16. Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure. Guo X; Wu Z; He M; Meng X; Jin X; Qiu N; Zhang J J Hazard Mater; 2014 Jul; 276():339-45. PubMed ID: 24910911 [TBL] [Abstract][Full Text] [Related]
17. Antimony oxidation and adsorption by in-situ formed biogenic Mn oxide and Fe-Mn oxides. Bai Y; Jefferson WA; Liang J; Yang T; Qu J J Environ Sci (China); 2017 Apr; 54():126-134. PubMed ID: 28391920 [TBL] [Abstract][Full Text] [Related]
18. Speciation of antimony in PET bottles produced in Japan and China by X-ray absorption fine structure spectroscopy. Takahashi Y; Sakuma K; Itai T; Zheng G; Mitsunobu S Environ Sci Technol; 2008 Dec; 42(24):9045-50. PubMed ID: 19174869 [TBL] [Abstract][Full Text] [Related]
19. Antimony(III) removal by biogenic manganese oxides formed by Pseudomonas aeruginosa PA-1: kinetics and mechanisms. Li Q; He Y; Yang A; Hu X; Liu F; Mu J; Mei S; Yang LP Environ Sci Pollut Res Int; 2023 Sep; 30(43):97102-97114. PubMed ID: 37584806 [TBL] [Abstract][Full Text] [Related]
20. Effect of Iron(II) on Arsenic Sequestration by δ-MnO2: Desorption Studies Using Stirred-Flow Experiments and X-Ray Absorption Fine-Structure Spectroscopy. Wu Y; Li W; Sparks DL Environ Sci Technol; 2015 Nov; 49(22):13360-8. PubMed ID: 26477604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]