BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30291156)

  • 1. A solution to Nature's haemoglobin knockout: a plasma-accessible carbonic anhydrase catalyses CO
    Harter TS; Sackville MA; Wilson JM; Metzger DCH; Egginton S; Esbaugh AJ; Farrell AP; Brauner CJ
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30291156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood and Gill Carbonic Anhydrase in the Context of a Chondrichthyan Model of CO
    McMillan OJL; Dichiera AM; Harter TS; Wilson JM; Esbaugh AJ; Brauner CJ
    Physiol Biochem Zool; 2019; 92(6):554-566. PubMed ID: 31567050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The physiological significance of plasma-accessible carbonic anhydrase in the respiratory systems of fishes.
    Harter TS; Dichiera AM; Esbaugh AJ
    J Comp Physiol B; 2024 Jun; ():. PubMed ID: 38842596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular distribution and characterization of gill carbonic anhydrase and evidence for a plasma carbonic anhydrase inhibitor in Antarctic fish.
    Tufts BL; Gervais MR; Staebler M; Weaver J
    J Comp Physiol B; 2002 May; 172(4):287-95. PubMed ID: 12037591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel perspective on the evolutionary loss of plasma-accessible carbonic anhydrase at the teleost gill.
    Harter TS; Smith EA; Tresguerres M
    J Exp Biol; 2023 Oct; 226(19):. PubMed ID: 37694374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas transfer in dogfish: a unique model of CO2 excretion.
    Gilmour KM; Perry SF
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Apr; 155(4):476-85. PubMed ID: 19896550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonic anhydrase activity in tissues of the icefish Chionodraco hamatus and of the red-blooded teleosts Trematomus bernacchii and Anguilla anguilla.
    Maffia M; Rizzello A; Acierno R; Rollo M; Chiloiro R; Storelli C
    J Exp Biol; 2001 Nov; 204(Pt 22):3983-92. PubMed ID: 11807116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of gill and red cell carbonic anhydrase in elasmobranch HCO3- and CO2 excretion.
    Swenson ER; Maren TH
    Am J Physiol; 1987 Sep; 253(3 Pt 2):R450-8. PubMed ID: 3115121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The roles of plasma accessible and cytosolic carbonic anhydrases in bicarbonate (HCO
    Giacomin M; Drummond JM; Supuran CT; Goss GG
    J Comp Physiol B; 2022 Nov; 192(6):713-725. PubMed ID: 36098803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pattern of carbon dioxide excretion in the rainbow trout Salmo gairdneri.
    Haswell MS; Randall DJ
    J Exp Biol; 1978 Feb; 72():17-24. PubMed ID: 415105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.
    Randall DJ; Rummer JL; Wilson JM; Wang S; Brauner CJ
    J Exp Biol; 2014 Apr; 217(Pt 8):1205-14. PubMed ID: 24744420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitation of CO2 excretion by carbonic anhydrase located on the surface of the basal membrane of crab gill epithelium.
    Burnett LE; McMahon BR
    Respir Physiol; 1985 Dec; 62(3):341-8. PubMed ID: 2418476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-associated carbonic anhydrase in the respiratory system of the Pacific hagfish (Eptatretus stouti).
    Esbaugh AJ; Gilmour KM; Perry SF
    Respir Physiol Neurobiol; 2009 Apr; 166(2):107-16. PubMed ID: 19429527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An atlas of plasma-accessible carbonic anhydrase availability in the model teleost, the rainbow trout.
    Nelson C; Dichiera AM; Jung EH; Brauner CJ
    J Comp Physiol B; 2023 Jun; 193(3):293-305. PubMed ID: 37029801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone microstructure and bone mineral density are not systemically different in Antarctic icefishes and related Antarctic notothenioids.
    Ashique AM; Atake OJ; Ovens K; Guo R; Pratt IV; Detrich HW; Cooper DML; Desvignes T; Postlethwait JH; Eames BF
    J Anat; 2022 Jan; 240(1):34-49. PubMed ID: 34423431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal profiles reveal stark contrasts in properties of biological membranes from heart among Antarctic notothenioid fishes which vary in expression of hemoglobin and myoglobin.
    Evans ER; Farnoud AM; O'Brien KM; Crockett EL
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 252():110539. PubMed ID: 33242660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of a single amino acid substitution in reduced red blood cell carbonic anhydrase function of early-diverging fish.
    Dichiera AM; McMillan OJL; Clifford AM; Goss GG; Brauner CJ; Esbaugh AJ
    J Comp Physiol B; 2020 May; 190(3):287-296. PubMed ID: 32146532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Branchial membrane-associated carbonic anhydrase activity maintains CO2 excretion in severely anemic dogfish.
    Gilmour KM; Perry SF
    Am J Physiol Regul Integr Comp Physiol; 2004 Jun; 286(6):R1138-48. PubMed ID: 14988082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tribute to R. G. Boutilier: evidence of a high activity carbonic anhydrase isozyme in the red blood cells of an ancient vertebrate, the sea lamprey Petromyzon marinus.
    Esbaugh AJ; Tufts BL
    J Exp Biol; 2006 Apr; 209(Pt 7):1169-78. PubMed ID: 16547289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of gill and blood carbonic anhydrase characteristics in three basal actinopterygian species: alligator gar (Atractosteus spatula), white sturgeon (Acipenser transmontanus) and Senegal bichir (Polypterus senegalus).
    Nelson C; Standen EM; Allen PJ; Brauner CJ
    J Comp Physiol B; 2024 Apr; 194(2):155-166. PubMed ID: 38459993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.