These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30291415)

  • 1. A dicyclic-type electrode-based biofilm reactor for simultaneous nitrate and Cr(VI) reduction.
    Zhai S; Zhao Y; Ji M; Qi W
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):167-172. PubMed ID: 30291415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous removal of nitrate and chromate in groundwater by a spiral fiber based biofilm reactor.
    Zhai S; Zhao Y; Ji M; Qi W
    Bioresour Technol; 2017 May; 232():278-284. PubMed ID: 28237899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor.
    Zhao Y; Feng C; Wang Q; Yang Y; Zhang Z; Sugiura N
    J Hazard Mater; 2011 Sep; 192(3):1033-9. PubMed ID: 21724327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating simultaneous chromate and nitrate reduction during microbial denitrification processes.
    Peng L; Liu Y; Gao SH; Chen X; Ni BJ
    Water Res; 2016 Feb; 89():1-8. PubMed ID: 26619398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable bioreduction of toxic levels of chromate in a denitrifying granular sludge reactor.
    Kiran Kumar Reddy G; Nancharaiah YV
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1969-1979. PubMed ID: 29105040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr(VI) and nitrate reduction.
    Sahinkaya E; Yurtsever A; Ucar D
    J Hazard Mater; 2017 Feb; 324(Pt A):15-21. PubMed ID: 26906435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of salinity and COD/N on denitrification and bacterial community in dicyclic-type electrode based biofilm reactor.
    Zhai S; Ji M; Zhao Y; Pavlostathis SG; Zhao Q
    Chemosphere; 2018 Feb; 192():328-336. PubMed ID: 29117591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of C/N and current density in a heterotrophic/biofilm-electrode autotrophic denitrification reactor (HAD-BER).
    Tong S; Chen N; Wang H; Liu H; Tao C; Feng C; Zhang B; Hao C; Pu J; Zhao J
    Bioresour Technol; 2014 Nov; 171():389-95. PubMed ID: 25222741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process.
    Sahinkaya E; Kilic A; Calimlioglu B; Toker Y
    J Hazard Mater; 2013 Nov; 262():234-9. PubMed ID: 24035799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperation and competition between denitrification and chromate reduction in a hydrogen-based membrane biofilm reactor.
    Zhou L; Wu F; Lai Y; Zhao B; Zhang W; Rittmann BE
    Water Res; 2024 Aug; 259():121870. PubMed ID: 38843627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous aerobic denitrification and Cr(VI) reduction by Pseudomonas brassicacearum LZ-4 in wastewater.
    Yu X; Jiang Y; Huang H; Shi J; Wu K; Zhang P; Lv J; Li H; He H; Liu P; Li X
    Bioresour Technol; 2016 Dec; 221():121-129. PubMed ID: 27639231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of heterotrophic/biofilm-electrode autotrophic denitrification for nitrate removal from groundwater.
    Tong S; Zhang B; Feng C; Zhao Y; Chen N; Hao C; Pu J; Zhao L
    Bioresour Technol; 2013 Nov; 148():121-7. PubMed ID: 24045199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance and microbial response to nitrate nitrogen removal from simulated groundwater by electrode biofilm reactor with Ti/CNT/Cu5-Pd5 catalytic cathode.
    Gao Y; Shen J; Yinzhang H; Yang L
    Water Environ Res; 2024 Jan; 96(1):e10974. PubMed ID: 38214427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of nitrate from agricultural runoff in biochar electrode based biofilm reactor: Performance and enhancement mechanisms.
    Xia Y; Lu D; Qi Y; Chen H; Zhao Y; Bai Y; Zhu L; Geng N; Xu C; Hua E
    Chemosphere; 2022 Aug; 301():134744. PubMed ID: 35489461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrate effects on chromate reduction in a methane-based biofilm.
    Zhong L; Lai CY; Shi LD; Wang KD; Dai YJ; Liu YW; Ma F; Rittmann BE; Zheng P; Zhao HP
    Water Res; 2017 May; 115():130-137. PubMed ID: 28273443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor.
    Chung J; Nerenberg R; Rittmann BE
    Water Res; 2006 May; 40(8):1634-42. PubMed ID: 16564559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate-contaminated drinking water treatment.
    Zhao Y; Zhang B; Feng C; Huang F; Zhang P; Zhang Z; Yang Y; Sugiura N
    Bioresour Technol; 2012 Mar; 107():159-65. PubMed ID: 22244955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous removal of nitrate and sulfate using an up-flow three-dimensional biofilm electrode reactor: Performance and microbial response.
    Tang Q; Sheng Y; Li C; Wang W; Liu X
    Bioresour Technol; 2020 Dec; 318():124096. PubMed ID: 32932117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-effective denitrification of low C/N wastewater by combined constructed wetland and biofilm-electrode reactor (CW-BER).
    He Y; Wang Y; Song X
    Bioresour Technol; 2016 Mar; 203():245-51. PubMed ID: 26735879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous removal of chromate and nitrate in a packed-bed bioreactor using biodegradable meal box as carbon source and biofilm carriers.
    Li J; Jin R; Liu G; Tian T; Wang J; Zhou J
    Bioresour Technol; 2016 May; 207():308-14. PubMed ID: 26896715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.