These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 30291426)
1. iNuc-ext-PseTNC: an efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition. Tahir M; Hayat M; Khan SA Mol Genet Genomics; 2019 Feb; 294(1):199-210. PubMed ID: 30291426 [TBL] [Abstract][Full Text] [Related]
2. iNuc-STNC: a sequence-based predictor for identification of nucleosome positioning in genomes by extending the concept of SAAC and Chou's PseAAC. Tahir M; Hayat M Mol Biosyst; 2016 Jul; 12(8):2587-93. PubMed ID: 27271822 [TBL] [Abstract][Full Text] [Related]
3. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Guo SH; Deng EZ; Xu LQ; Ding H; Lin H; Chen W; Chou KC Bioinformatics; 2014 Jun; 30(11):1522-9. PubMed ID: 24504871 [TBL] [Abstract][Full Text] [Related]
4. NucPosPred: Predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC. Jia C; Yang Q; Zou Q J Theor Biol; 2018 Aug; 450():15-21. PubMed ID: 29678692 [TBL] [Abstract][Full Text] [Related]
5. "iSS-Hyb-mRMR": Identification of splicing sites using hybrid space of pseudo trinucleotide and pseudo tetranucleotide composition. Iqbal M; Hayat M Comput Methods Programs Biomed; 2016 May; 128():1-11. PubMed ID: 27040827 [TBL] [Abstract][Full Text] [Related]
6. Prediction of nucleosome positioning by the incorporation of frequencies and distributions of three different nucleotide segment lengths into a general pseudo k-tuple nucleotide composition. Awazu A Bioinformatics; 2017 Jan; 33(1):42-48. PubMed ID: 27563027 [TBL] [Abstract][Full Text] [Related]
7. iMethyl-STTNC: Identification of N Akbar S; Hayat M J Theor Biol; 2018 Oct; 455():205-211. PubMed ID: 30031793 [TBL] [Abstract][Full Text] [Related]
8. [Identification of nucleosome positioning using support vector machine method based on comprehensive DNA sequence feature]. Cui Y; Xu Z; Li J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Jun; 37(3):496-501. PubMed ID: 32597092 [TBL] [Abstract][Full Text] [Related]
9. An analysis and prediction of nucleosome positioning based on information content. Xing YQ; Liu GQ; Zhao XJ; Cai L Chromosome Res; 2013 Mar; 21(1):63-74. PubMed ID: 23435498 [TBL] [Abstract][Full Text] [Related]
10. iMem-2LSAAC: A two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into chou's pseudo amino acid composition. Arif M; Hayat M; Jan Z J Theor Biol; 2018 Apr; 442():11-21. PubMed ID: 29337263 [TBL] [Abstract][Full Text] [Related]
11. iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties. Chen W; Lin H; Feng PM; Ding C; Zuo YC; Chou KC PLoS One; 2012; 7(10):e47843. PubMed ID: 23144709 [TBL] [Abstract][Full Text] [Related]
12. ZCMM: A Novel Method Using Z-Curve Theory- Based and Position Weight Matrix for Predicting Nucleosome Positioning. Cui Y; Xu Z; Li J Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31569414 [TBL] [Abstract][Full Text] [Related]
13. Sequence based predictor for discrimination of enhancer and their types by applying general form of Chou's trinucleotide composition. Tahir M; Hayat M; Kabir M Comput Methods Programs Biomed; 2017 Jul; 146():69-75. PubMed ID: 28688491 [TBL] [Abstract][Full Text] [Related]
14. iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples. Kabir M; Hayat M Mol Genet Genomics; 2016 Feb; 291(1):285-96. PubMed ID: 26319782 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis and prediction of nucleosome positioning using integrative feature representation and machine learning algorithms. Han GS; Li Q; Li Y BMC Bioinformatics; 2021 Jun; 22(Suppl 6):129. PubMed ID: 34078256 [TBL] [Abstract][Full Text] [Related]
16. iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Chen W; Feng PM; Deng EZ; Lin H; Chou KC Anal Biochem; 2014 Oct; 462():76-83. PubMed ID: 25016190 [TBL] [Abstract][Full Text] [Related]
17. DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC. Rahman MS; Shatabda S; Saha S; Kaykobad M; Rahman MS J Theor Biol; 2018 Sep; 452():22-34. PubMed ID: 29753757 [TBL] [Abstract][Full Text] [Related]
18. Prediction of nucleosome positioning in genomes: limits and perspectives of physical and bioinformatic approaches. De Santis P; Morosetti S; Scipioni A J Biomol Struct Dyn; 2010 Jun; 27(6):747-64. PubMed ID: 20232931 [TBL] [Abstract][Full Text] [Related]
19. Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition. Ahmad K; Waris M; Hayat M J Membr Biol; 2016 Jun; 249(3):293-304. PubMed ID: 26746980 [TBL] [Abstract][Full Text] [Related]
20. A deformation energy-based model for predicting nucleosome dyads and occupancy. Liu G; Xing Y; Zhao H; Wang J; Shang Y; Cai L Sci Rep; 2016 Apr; 6():24133. PubMed ID: 27053067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]