These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1067 related articles for article (PubMed ID: 30291585)
1. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV). Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585 [TBL] [Abstract][Full Text] [Related]
2. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump. Good BC; Manning KB Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269 [TBL] [Abstract][Full Text] [Related]
3. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676 [TBL] [Abstract][Full Text] [Related]
4. Effect of impeller rotational phase on the FDA blood pump velocity fields. Ucak K; Karatas F; Pekkan K Artif Organs; 2024 Oct; 48(10):1126-1137. PubMed ID: 38957988 [TBL] [Abstract][Full Text] [Related]
5. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry. Su B; Chua LP; Wang X Artif Organs; 2012 Apr; 36(4):359-67. PubMed ID: 22040356 [TBL] [Abstract][Full Text] [Related]
6. FDA Benchmark Medical Device Flow Models for CFD Validation. Malinauskas RA; Hariharan P; Day SW; Herbertson LH; Buesen M; Steinseifer U; Aycock KI; Good BC; Deutsch S; Manning KB; Craven BA ASAIO J; 2017; 63(2):150-160. PubMed ID: 28114192 [TBL] [Abstract][Full Text] [Related]
7. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model. Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081 [TBL] [Abstract][Full Text] [Related]
8. Results of the Interlaboratory Computational Fluid Dynamics Study of the FDA Benchmark Blood Pump. Ponnaluri SV; Hariharan P; Herbertson LH; Manning KB; Malinauskas RA; Craven BA Ann Biomed Eng; 2023 Jan; 51(1):253-269. PubMed ID: 36401112 [TBL] [Abstract][Full Text] [Related]
9. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry. Taylor JO; Good BC; Paterno AV; Hariharan P; Deutsch S; Malinauskas RA; Manning KB Cardiovasc Eng Technol; 2016 Sep; 7(3):191-209. PubMed ID: 27350137 [TBL] [Abstract][Full Text] [Related]
10. Development of a numerical pump testing framework. Kaufmann TA; Gregory SD; Büsen MR; Tansley GD; Steinseifer U Artif Organs; 2014 Sep; 38(9):783-90. PubMed ID: 25234761 [TBL] [Abstract][Full Text] [Related]
11. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation. Craven BA; Aycock KI; Manning KB Cardiovasc Eng Technol; 2018 Dec; 9(4):654-673. PubMed ID: 30446978 [TBL] [Abstract][Full Text] [Related]
12. Experimental and Numerical Investigation of an Axial Rotary Blood Pump. Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467 [TBL] [Abstract][Full Text] [Related]
13. A prototype HeartQuest ventricular assist device for particle image velocimetry measurements. Day SW; McDaniel JC; Wood HG; Allaire PE; Song X; Lemire PP; Miles SD Artif Organs; 2002 Nov; 26(11):1002-5. PubMed ID: 12406161 [TBL] [Abstract][Full Text] [Related]
14. Effects of Cone-Shaped Bend Inlet Cannulas of an Axial Blood Pump on Thrombus Formation: An Experiment and Simulation Study. Liu G; Zhou J; Sun H; Zhang Y; Chen H; Hu S Med Sci Monit; 2017 Apr; 23():1655-1661. PubMed ID: 28379938 [TBL] [Abstract][Full Text] [Related]
15. Classification of Unsteady Flow Patterns in a Rotodynamic Blood Pump: Introduction of Non-Dimensional Regime Map. Shu F; Vandenberghe S; Brackett J; Antaki JF Cardiovasc Eng Technol; 2015 Sep; 6(3):230-41. PubMed ID: 26577357 [TBL] [Abstract][Full Text] [Related]
16. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance. Untaroiu A; Throckmorton AL; Patel SM; Wood HG; Allaire PE; Olsen DB Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287 [TBL] [Abstract][Full Text] [Related]
17. PIV measurements of flow in a centrifugal blood pump: steady flow. Day SW; McDaniel JC J Biomech Eng; 2005 Apr; 127(2):244-53. PubMed ID: 15971702 [TBL] [Abstract][Full Text] [Related]
18. Twisted cardiovascular cages for intravascular axial flow blood pumps to support the Fontan physiology. Throckmorton AL; Downs EA; Hazelwood JA; Monroe JO; Chopski SG Int J Artif Organs; 2012 May; 35(5):369-75. PubMed ID: 22661112 [TBL] [Abstract][Full Text] [Related]
19. [Design of an axial blood pump of diffuser with splitter blades and cantilevered main blades]. Liu G; Xi J; Chen H; Zhang Y; Hou J; Zhou J; Sun H; Hu S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Jun; 36(3):379-385. PubMed ID: 31232539 [TBL] [Abstract][Full Text] [Related]
20. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump. Fang P; Du J; Yu S Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]