These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 30291590)
1. Representation of Multiple Cellular Phenotypes Within Tissue-Level Simulations of Cardiac Electrophysiology. Bowler LA; Gavaghan DJ; Mirams GR; Whiteley JP Bull Math Biol; 2019 Jan; 81(1):7-38. PubMed ID: 30291590 [TBL] [Abstract][Full Text] [Related]
2. Modelling the effect of gap junctions on tissue-level cardiac electrophysiology. Bruce D; Pathmanathan P; Whiteley JP Bull Math Biol; 2014 Feb; 76(2):431-54. PubMed ID: 24338526 [TBL] [Abstract][Full Text] [Related]
3. An efficient numerical technique for the solution of the monodomain and bidomain equations. Whiteley JP IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318 [TBL] [Abstract][Full Text] [Related]
4. An evaluation of some assumptions underpinning the bidomain equations of electrophysiology. Whiteley JP Math Med Biol; 2020 May; 37(2):262-302. PubMed ID: 31680135 [TBL] [Abstract][Full Text] [Related]
5. Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements. Cuccuru G; Fotia G; Maggio F; Southern J Biomed Res Int; 2015; 2015():473279. PubMed ID: 26583112 [TBL] [Abstract][Full Text] [Related]
6. Evaluating computational efforts and physiological resolution of mathematical models of cardiac tissue. Jæger KH; Trotter JD; Cai X; Arevalo H; Tveito A Sci Rep; 2024 Jul; 14(1):16954. PubMed ID: 39043725 [TBL] [Abstract][Full Text] [Related]
7. Single-Cell RNA-Sequencing and Optical Electrophysiology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveal Discordance Between Cardiac Subtype-Associated Gene Expression Patterns and Electrophysiological Phenotypes. Biendarra-Tiegs SM; Li X; Ye D; Brandt EB; Ackerman MJ; Nelson TJ Stem Cells Dev; 2019 May; 28(10):659-673. PubMed ID: 30892143 [TBL] [Abstract][Full Text] [Related]
8. Bidomain ECG simulations using an augmented monodomain model for the cardiac source. Bishop MJ; Plank G IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21536529 [TBL] [Abstract][Full Text] [Related]
9. Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. Colli Franzone P; Pavarino LF; Taccardi B Math Biosci; 2005 Sep; 197(1):35-66. PubMed ID: 16009380 [TBL] [Abstract][Full Text] [Related]
10. A comparative study of graph-based, eikonal, and monodomain simulations for the estimation of cardiac activation times. Wallman M; Smith NP; Rodriguez B IEEE Trans Biomed Eng; 2012 Jun; 59(6):1739-48. PubMed ID: 22491074 [TBL] [Abstract][Full Text] [Related]
11. Uniformization method for solving cardiac electrophysiology models based on the Markov-chain formulation. Gomes JM; Alvarenga A; Campos RS; Rocha BM; da Silva AP; dos Santos RW IEEE Trans Biomed Eng; 2015 Feb; 62(2):600-8. PubMed ID: 25296402 [TBL] [Abstract][Full Text] [Related]
12. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199 [TBL] [Abstract][Full Text] [Related]
13. A finite element approach for modeling micro-structural discontinuities in the heart. Costa CM; Campos FO; Prassl AJ; dos Santos RW; Sánchez-Quintana D; Hofer E; Plank G Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():437-40. PubMed ID: 22254342 [TBL] [Abstract][Full Text] [Related]
14. Empirical study of an adaptive multiscale model for simulating cardiac conduction. Hand PE; Griffith BE Bull Math Biol; 2011 Dec; 73(12):3071-89. PubMed ID: 21533664 [TBL] [Abstract][Full Text] [Related]
15. Activation dynamics in anisotropic cardiac tissue via decoupling. Clements JC; Nenonen J; Li PK; Horácek BM Ann Biomed Eng; 2004 Jul; 32(7):984-90. PubMed ID: 15298436 [TBL] [Abstract][Full Text] [Related]
16. Modulation of conduction velocity by nonmyocytes in the low coupling regime. Jacquemet V; Henriquez CS IEEE Trans Biomed Eng; 2009 Mar; 56(3):893-6. PubMed ID: 19389687 [TBL] [Abstract][Full Text] [Related]
17. Computational cardiac electrophysiology: implementing mathematical models of cardiomyocytes to simulate action potentials of the heart. Bell MM; Cherry EM Methods Mol Biol; 2015; 1299():65-74. PubMed ID: 25836575 [TBL] [Abstract][Full Text] [Related]
18. Incorporating inductances in tissue-scale models of cardiac electrophysiology. Rossi S; Griffith BE Chaos; 2017 Sep; 27(9):093926. PubMed ID: 28964127 [TBL] [Abstract][Full Text] [Related]
19. A finite volume method for modeling discontinuous electrical activation in cardiac tissue. Trew M; Le Grice I; Smaill B; Pullan A Ann Biomed Eng; 2005 May; 33(5):590-602. PubMed ID: 15981860 [TBL] [Abstract][Full Text] [Related]
20. Representing cardiac bidomain bath-loading effects by an augmented monodomain approach: application to complex ventricular models. Bishop MJ; Plank G IEEE Trans Biomed Eng; 2011 Apr; 58(4):1066-75. PubMed ID: 21292591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]