These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 30291659)
21. Integration of a nanostructured dielectrophoretic device and a surface-enhanced Raman probe for highly sensitive rapid bacteria detection. Madiyar FR; Bhana S; Swisher LZ; Culbertson CT; Huang X; Li J Nanoscale; 2015 Feb; 7(8):3726-36. PubMed ID: 25641315 [TBL] [Abstract][Full Text] [Related]
22. Potential of surface-enhanced Raman spectroscopy for the rapid identification of Escherichia coli and Listeria monocytogenes cultures on silver colloidal nanoparticles. Liu Y; Chen YR; Nou X; Chao K Appl Spectrosc; 2007 Aug; 61(8):824-31. PubMed ID: 17716400 [TBL] [Abstract][Full Text] [Related]
24. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Wang H; Zhou Y; Jiang X; Sun B; Zhu Y; Wang H; Su Y; He Y Angew Chem Int Ed Engl; 2015 Apr; 54(17):5132-6. PubMed ID: 25820791 [TBL] [Abstract][Full Text] [Related]
25. Rapid detection of food- and waterborne bacteria using surface-enhanced Raman spectroscopy coupled with silver nanosubstrates. Fan C; Hu Z; Mustapha A; Lin M Appl Microbiol Biotechnol; 2011 Dec; 92(5):1053-61. PubMed ID: 22005743 [TBL] [Abstract][Full Text] [Related]
26. Sources of variability in SERS spectra of bacteria: comprehensive analysis of interactions between selected bacteria and plasmonic nanostructures. Witkowska E; Niciński K; Korsak D; Szymborski T; Kamińska A Anal Bioanal Chem; 2019 Apr; 411(10):2001-2017. PubMed ID: 30828759 [TBL] [Abstract][Full Text] [Related]
27. Longitudinal Monitoring of Biofilm Formation via Robust Surface-Enhanced Raman Scattering Quantification of Pseudomonas aeruginosa-Produced Metabolites. Nguyen CQ; Thrift WJ; Bhattacharjee A; Ranjbar S; Gallagher T; Darvishzadeh-Varcheie M; Sanderson RN; Capolino F; Whiteson K; Baldi P; Hochbaum AI; Ragan R ACS Appl Mater Interfaces; 2018 Apr; 10(15):12364-12373. PubMed ID: 29589446 [TBL] [Abstract][Full Text] [Related]
28. Investigation of volatile metabolites during growth of Escherichia coli and Pseudomonas aeruginosa by needle trap-GC-MS. Zscheppank C; Wiegand HL; Lenzen C; Wingender J; Telgheder U Anal Bioanal Chem; 2014 Oct; 406(26):6617-28. PubMed ID: 25146358 [TBL] [Abstract][Full Text] [Related]
29. Surface-enhanced Raman spectroscopy-active substrates: adapting the shape of plasmonic nanoparticles for different biological applications. Vitol EA; Friedman G; Gogotsi Y J Nanosci Nanotechnol; 2014 Apr; 14(4):3046-51. PubMed ID: 24734732 [TBL] [Abstract][Full Text] [Related]
30. [Research on volatiles of rakkyo (Allium Chinense G. Don) and Chinese chive (Allium Tuberosum Rottl. ex Sprengel) based on headspace and the molecular recognition of SERS]. Zhang CY; Si MZ; Li L; Zhang DQ Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):394-8. PubMed ID: 25970899 [TBL] [Abstract][Full Text] [Related]
31. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles. Chen X; Tang M; Liu Y; Huang J; Liu Z; Tian H; Zheng Y; de la Chapelle ML; Zhang Y; Fu W Mikrochim Acta; 2019 Jan; 186(2):102. PubMed ID: 30637528 [TBL] [Abstract][Full Text] [Related]
32. Hydrophobic interaction enables rapid enrichment of volatile metabolites on Au/TiO Li J; Xu J; Liu Y; Xu J; Yang L; Gao Z; Song YY J Mater Chem B; 2023 May; 11(17):3877-3884. PubMed ID: 37016803 [TBL] [Abstract][Full Text] [Related]
33. Metabolite-Mediated Bacterial Antibiotic Resistance Revealed by Surface-Enhanced Raman Spectroscopy. Wang W; Vikesland PJ Environ Sci Technol; 2023 Sep; 57(36):13375-13383. PubMed ID: 37624741 [TBL] [Abstract][Full Text] [Related]
35. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Liu CY; Han YY; Shih PH; Lian WN; Wang HH; Lin CH; Hsueh PR; Wang JK; Wang YL Sci Rep; 2016 Mar; 6():23375. PubMed ID: 26997474 [TBL] [Abstract][Full Text] [Related]
36. Surface-Enhanced Raman Spectroscopy for Chen J; Wang JF; Wu XZ; Rong Z; Dong PT; Xiao R J Nanosci Nanotechnol; 2018 Jun; 18(6):3825-3831. PubMed ID: 29442715 [TBL] [Abstract][Full Text] [Related]
37. Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition. Wang J; Wu X; Wang C; Shao N; Dong P; Xiao R; Wang S ACS Appl Mater Interfaces; 2015 Sep; 7(37):20919-29. PubMed ID: 26322791 [TBL] [Abstract][Full Text] [Related]
38. Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of Bodelón G; Montes-García V; Pérez-Juste J; Pastoriza-Santos I Front Cell Infect Microbiol; 2018; 8():143. PubMed ID: 29868499 [TBL] [Abstract][Full Text] [Related]
39. [SERS spectroscopy study of three pathogenic bacteria]. Su YB; Si MZ; Zhang DQ; Liu RM; Lin FC Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jul; 32(7):1825-8. PubMed ID: 23016333 [TBL] [Abstract][Full Text] [Related]
40. Targeted metabolic profiling rapidly differentiates Escherichia coli and Staphylococcus aureus at species and strain level. Li H; Zhu J Rapid Commun Mass Spectrom; 2017 Oct; 31(19):1669-1676. PubMed ID: 28776775 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]