These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood. Sivanesan A; Witkowska E; Adamkiewicz W; Dziewit Ł; Kamińska A; Waluk J Analyst; 2014 Mar; 139(5):1037-43. PubMed ID: 24419003 [TBL] [Abstract][Full Text] [Related]
63. Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection. Chu H; Huang Y; Zhao Y Appl Spectrosc; 2008 Aug; 62(8):922-31. PubMed ID: 18702867 [TBL] [Abstract][Full Text] [Related]
64. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Zhou H; Yang D; Ivleva NP; Mircescu NE; Niessner R; Haisch C Anal Chem; 2014 Feb; 86(3):1525-33. PubMed ID: 24387044 [TBL] [Abstract][Full Text] [Related]
65. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis. Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430 [TBL] [Abstract][Full Text] [Related]
66. Plasmonic Nanotrough Networks for Scalable Bacterial Raman Biosensing. Zhang R; Hong Y; Reinhard BM; Liu P; Wang R; Dal Negro L ACS Appl Mater Interfaces; 2018 Aug; 10(33):27928-27935. PubMed ID: 30051708 [TBL] [Abstract][Full Text] [Related]
67. [Active transport of fosfomycin into cells of Escherichia coli, multidrug-resistant Pseudomonas aeruginosa and Staphylococcus aureus]. Tsuruoka T; Miyata A; Inouye S Jpn J Antibiot; 1995 Dec; 48(12):1935-8. PubMed ID: 8587167 [TBL] [Abstract][Full Text] [Related]
68. Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect. Zhang JY; Do J; Premasiri WR; Ziegler LD; Klapperich CM Lab Chip; 2010 Dec; 10(23):3265-70. PubMed ID: 20938505 [TBL] [Abstract][Full Text] [Related]
69. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Medina Cruz D; Mi G; Webster TJ J Biomed Mater Res A; 2018 May; 106(5):1400-1412. PubMed ID: 29356322 [TBL] [Abstract][Full Text] [Related]
70. Large protein analysis of Staphylococcus aureus and Escherichia coli by MALDI TOF mass spectrometry using amoxicillin functionalized magnetic nanoparticles. Hasan N; Guo Z; Wu HF Anal Bioanal Chem; 2016 Sep; 408(23):6269-81. PubMed ID: 27565791 [TBL] [Abstract][Full Text] [Related]
71. Combined activity of clindamycin and gentamicin on Bacteroides fragilis and other bacteria. Okubadejo OA; Allen J J Antimicrob Chemother; 1975 Dec; 1(4):403-9. PubMed ID: 812858 [No Abstract] [Full Text] [Related]
72. Detection and validation of volatile metabolic patterns over different strains of two human pathogenic bacteria during their growth in a complex medium using multi-capillary column-ion mobility spectrometry (MCC-IMS). Kunze N; Göpel J; Kuhns M; Jünger M; Quintel M; Perl T Appl Microbiol Biotechnol; 2013 Apr; 97(8):3665-76. PubMed ID: 23467822 [TBL] [Abstract][Full Text] [Related]
73. In vitro bactericidal activity of piperacillin, gentamicin, and metronidazole in a mixed model containing Escherichia coli, Enterococcus faecalis, and Bacteroides fragilis. Pendland SL; Jung R; Messick CR; Schriever CA; Patka J Diagn Microbiol Infect Dis; 2002 Jun; 43(2):149-56. PubMed ID: 12088623 [TBL] [Abstract][Full Text] [Related]
74. Evaluation of forty new phenothiazine derivatives for activity against intrinsic efflux pump systems of reference Escherichia coli, Salmonella Enteritidis, Enterococcus faecalis and Staphylococcus aureus strains. Takács D; Cerca P; Martins A; Riedl Z; Hajós G; Molnár J; Viveiros M; Couto I; Amaral L In Vivo; 2011; 25(5):719-24. PubMed ID: 21753124 [TBL] [Abstract][Full Text] [Related]
75. Label-Free SERS Discrimination and In Situ Analysis of Life Cycle in Paccotti N; Boschetto F; Horiguchi S; Marin E; Chiadò A; Novara C; Geobaldo F; Giorgis F; Pezzotti G Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30558342 [TBL] [Abstract][Full Text] [Related]
76. Molecular Determinants of the Thickened Matrix in a Dual-Species Pseudomonas aeruginosa and Enterococcus faecalis Biofilm. Lee K; Lee KM; Kim D; Yoon SS Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842537 [TBL] [Abstract][Full Text] [Related]
77. Fourier transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in milk. Nicolaou N; Xu Y; Goodacre R Anal Chem; 2011 Jul; 83(14):5681-7. PubMed ID: 21639098 [TBL] [Abstract][Full Text] [Related]
78. Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering. Najafi R; Mukherjee S; Hudson J; Sharma A; Banerjee P Int J Food Microbiol; 2014 Oct; 189():89-97. PubMed ID: 25133877 [TBL] [Abstract][Full Text] [Related]
79. Electrochemical Surface-Enhanced Raman Spectroscopy as a Platform for Bacterial Detection and Identification. Lynk TP; Sit CS; Brosseau CL Anal Chem; 2018 Nov; 90(21):12639-12646. PubMed ID: 30350616 [TBL] [Abstract][Full Text] [Related]
80. Quantitative detection of isotopically enriched E. coli cells by SERS. Chisanga M; Muhamadali H; Kimber R; Goodacre R Faraday Discuss; 2017 Dec; 205():331-343. PubMed ID: 28880030 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]