These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30291858)

  • 1. Metabolic responses of brown planthoppers to IR56 resistant rice cultivar containing multiple resistance genes.
    Yue L; Kang K; Zhang W
    J Insect Physiol; 2019; 113():67-76. PubMed ID: 30291858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative metabolomics analysis of different resistant rice varieties in response to the brown planthopper Nilaparvata lugens Hemiptera: Delphacidae.
    Kang K; Yue L; Xia X; Liu K; Zhang W
    Metabolomics; 2019 Apr; 15(4):62. PubMed ID: 30976994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants.
    Liu C; Du B; Hao F; Lei H; Wan Q; He G; Wang Y; Tang H
    Plant Biotechnol J; 2017 Oct; 15(10):1346-1357. PubMed ID: 28278368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Responses of
    Nanda S; Wan PJ; Yuan SY; Lai FX; Wang WX; Fu Q
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30551584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics of detoxification and toxin-tolerance genes in brown planthopper (Nilaparvata lugens Stål., Homoptera: Delphacidae) feeding on resistant rice plants.
    Yang Z; Zhang F; He Q; He G
    Arch Insect Biochem Physiol; 2005 Jun; 59(2):59-66. PubMed ID: 15898115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phloem-exudate proteome analysis of response to insect brown plant-hopper in rice.
    Du B; Wei Z; Wang Z; Wang X; Peng X; Du B; Chen R; Zhu L; He G
    J Plant Physiol; 2015 Jul; 183():13-22. PubMed ID: 26072143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The brown planthopper NlDHRS11 is involved in the detoxification of rice secondary compounds.
    Yang J; Yan SY; Li GC; Guo H; Tang R; Ma R; Cai QN
    Pest Manag Sci; 2023 Dec; 79(12):4828-4838. PubMed ID: 37489868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome and metabolome analyses reveal the responses of brown planthoppers to RH resistant rice cultivar.
    Li C; Xiong Z; Fang C; Liu K
    Front Physiol; 2022; 13():1018470. PubMed ID: 36187783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic and transcriptomic responses of two Nilaparvata lugens populations to the Mudgo rice containing Bph1.
    Wan PJ; Zhou RN; Nanda S; He JC; Yuan SY; Wang WX; Lai FX; Fu Q
    Sci Rep; 2019 Oct; 9(1):14049. PubMed ID: 31575938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of Nilaparvata lugens nymphal responses to high-density and low-quality rice hosts.
    Hu DB; Luo BQ; Li J; Han Y; Jiang TR; Liu J; Wu G; Hua HX; Xiong YF; Li JS
    Insect Sci; 2013 Dec; 20(6):703-16. PubMed ID: 23956011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling.
    Wang Y; Guo H; Li H; Zhang H; Miao X
    BMC Genomics; 2012 Dec; 13():687. PubMed ID: 23228240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and analysis of miRNAs in IR56 rice in response to BPH infestations of different virulence levels.
    Nanda S; Yuan SY; Lai FX; Wang WX; Fu Q; Wan PJ
    Sci Rep; 2020 Nov; 10(1):19093. PubMed ID: 33154527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses.
    Uawisetwathana U; Chevallier OP; Xu Y; Kamolsukyeunyong W; Nookaew I; Somboon T; Toojinda T; Vanavichit A; Goodacre R; Elliott CT; Karoonuthaisiri N
    Metabolomics; 2019 Nov; 15(12):151. PubMed ID: 31741127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silencing of miR156 confers enhanced resistance to brown planthopper in rice.
    Ge Y; Han J; Zhou G; Xu Y; Ding Y; Shi M; Guo C; Wu G
    Planta; 2018 Oct; 248(4):813-826. PubMed ID: 29934776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomics identifies key defense mechanisms in rice resistant to both leaf-feeding and phloem feeding herbivores.
    Li Y; Cheah BH; Fang YF; Kuang YH; Lin SC; Liao CT; Huang SH; Lin YF; Chuang WP
    BMC Plant Biol; 2021 Jun; 21(1):306. PubMed ID: 34193042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stål]) in the rice cultivar ADR52.
    Myint KK; Fujita D; Matsumura M; Sonoda T; Yoshimura A; Yasui H
    Theor Appl Genet; 2012 Feb; 124(3):495-504. PubMed ID: 22048639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation and characterization of indigenous rice (
    Roy D; Biswas A; Sarkar S; Chakraborty G; Gaber A; Kobeasy MI; Hossain A
    PeerJ; 2022; 10():e14360. PubMed ID: 36353600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current understanding of the molecular players involved in resistance to rice planthoppers.
    Ling Y; Ang L; Weilin Z
    Pest Manag Sci; 2019 Oct; 75(10):2566-2574. PubMed ID: 31095858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomics of interaction between the brown planthopper and rice.
    Jing S; Zhao Y; Du B; Chen R; Zhu L; He G
    Curr Opin Insect Sci; 2017 Feb; 19():82-87. PubMed ID: 28521948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feeding-induced interactions between Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae): effects on feeding behavior and honeydew excretion.
    Cao TT; Backus EA; Lou YG; Cheng JA
    Environ Entomol; 2013 Oct; 42(5):987-97. PubMed ID: 24331608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.