These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 30291974)

  • 1. Mapping the human brain's cortical-subcortical functional network organization.
    Ji JL; Spronk M; Kulkarni K; Repovš G; Anticevic A; Cole MW
    Neuroimage; 2019 Jan; 185():35-57. PubMed ID: 30291974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating Large-Scale Network Convergence in the Human Functional Connectome.
    Bell PT; Shine JM
    Brain Connect; 2015 Nov; 5(9):565-74. PubMed ID: 26005099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in structural and functional connectivity among resting-state networks across the human lifespan.
    Betzel RF; Byrge L; He Y; Goñi J; Zuo XN; Sporns O
    Neuroimage; 2014 Nov; 102 Pt 2():345-57. PubMed ID: 25109530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Basis of Large-Scale Functional Connectivity in the Mouse.
    Grandjean J; Zerbi V; Balsters JH; Wenderoth N; Rudin M
    J Neurosci; 2017 Aug; 37(34):8092-8101. PubMed ID: 28716961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortico-subcortical interactions in overlapping communities of edge functional connectivity.
    Chumin EJ; Faskowitz J; Esfahlani FZ; Jo Y; Merritt H; Tanner J; Cutts SA; Pope M; Betzel R; Sporns O
    Neuroimage; 2022 Apr; 250():118971. PubMed ID: 35131435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. System-level matching of structural and functional connectomes in the human brain.
    Osmanlıoğlu Y; Tunç B; Parker D; Elliott MA; Baum GL; Ciric R; Satterthwaite TD; Gur RE; Gur RC; Verma R
    Neuroimage; 2019 Oct; 199():93-104. PubMed ID: 31141738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain network profiling defines functionally specialized cortical networks.
    Di Plinio S; Ebisch SJH
    Hum Brain Mapp; 2018 Dec; 39(12):4689-4706. PubMed ID: 30076763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain organization into resting state networks emerges at criticality on a model of the human connectome.
    Haimovici A; Tagliazucchi E; Balenzuela P; Chialvo DR
    Phys Rev Lett; 2013 Apr; 110(17):178101. PubMed ID: 23679783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The parcellation-based connectome: limitations and extensions.
    de Reus MA; van den Heuvel MP
    Neuroimage; 2013 Oct; 80():397-404. PubMed ID: 23558097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topographic organization of the human subcortex unveiled with functional connectivity gradients.
    Tian Y; Margulies DS; Breakspear M; Zalesky A
    Nat Neurosci; 2020 Nov; 23(11):1421-1432. PubMed ID: 32989295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different topological organization of human brain functional networks with eyes open versus eyes closed.
    Xu P; Huang R; Wang J; Van Dam NT; Xie T; Dong Z; Chen C; Gu R; Zang YF; He Y; Fan J; Luo YJ
    Neuroimage; 2014 Apr; 90():246-55. PubMed ID: 24434242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI.
    Mechling AE; Hübner NS; Lee HL; Hennig J; von Elverfeldt D; Harsan LA
    Neuroimage; 2014 Aug; 96():203-15. PubMed ID: 24718287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex brain networks: graph theoretical analysis of structural and functional systems.
    Bullmore E; Sporns O
    Nat Rev Neurosci; 2009 Mar; 10(3):186-98. PubMed ID: 19190637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Connectivity in Multiple Cortical Networks Is Associated with Performance Across Cognitive Domains in Older Adults.
    Shaw EE; Schultz AP; Sperling RA; Hedden T
    Brain Connect; 2015 Oct; 5(8):505-16. PubMed ID: 25827242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rich club organization supports a diverse set of functional network configurations.
    Senden M; Deco G; de Reus MA; Goebel R; van den Heuvel MP
    Neuroimage; 2014 Aug; 96():174-82. PubMed ID: 24699017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of multi-scale common brain networks based on DICCCOL.
    Ge B; Guo L; Zhu D; Zhang T; Hu X; Han J; Liu T
    Inf Process Med Imaging; 2013; 23():692-704. PubMed ID: 24684010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Large-Scale Organization of Object-Responsive Cortex Is Reflected in Resting-State Network Architecture.
    Konkle T; Caramazza A
    Cereb Cortex; 2017 Oct; 27(10):4933-4945. PubMed ID: 27664960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driving and driven architectures of directed small-world human brain functional networks.
    Yan C; He Y
    PLoS One; 2011; 6(8):e23460. PubMed ID: 21858129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcortical influences on the topology of cortical networks align with functional processing hierarchies.
    Hirsch F; Wohlschlaeger A
    Neuroimage; 2023 Dec; 283():120417. PubMed ID: 37866758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network diffusion accurately models the relationship between structural and functional brain connectivity networks.
    Abdelnour F; Voss HU; Raj A
    Neuroimage; 2014 Apr; 90():335-47. PubMed ID: 24384152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.