BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 30292109)

  • 1. Antioxidant systems responses and the compatible solutes as contributing factors to lead accumulation and tolerance in Lathyrus sativus inoculated by plant growth promoting rhizobacteria.
    Abdelkrim S; Jebara SH; Jebara M
    Ecotoxicol Environ Saf; 2018 Dec; 166():427-436. PubMed ID: 30292109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of efficient and resistant plant growth-promoting rhizobacteria in lead uptake and plant defence stimulation in Lathyrus sativus under lead stress.
    Abdelkrim S; Jebara SH; Saadani O; Jebara M
    Plant Biol (Stuttg); 2018 Sep; 20(5):857-869. PubMed ID: 29907996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ effects of Lathyrus sativus- PGPR to remediate and restore quality and fertility of Pb and Cd polluted soils.
    Abdelkrim S; Jebara SH; Saadani O; Abid G; Taamalli W; Zemni H; Mannai K; Louati F; Jebara M
    Ecotoxicol Environ Saf; 2020 Apr; 192():110260. PubMed ID: 32050135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Pb-resistant plant growth-promoting rhizobacteria inoculation on growth and lead uptake by Lathyrus sativus.
    Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Jebara M
    J Basic Microbiol; 2018 Jul; 58(7):579-589. PubMed ID: 29737549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant growth promoting rhizobacteria modulates the antioxidant defense and the expression of stress-responsive genes providing Pb accumulation and tolerance of grass pea.
    Abdelkrim S; Abid G; Chaieb O; Taamalli W; Mannai K; Louati F; Jebara M; Jebara SH
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):10789-10802. PubMed ID: 36083364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria.
    Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M
    Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression.
    El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA
    Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of two-sided crosstalk between NO and H
    Amooaghaie R; Zangene-Madar F; Enteshari S
    Ecotoxicol Environ Saf; 2017 May; 139():210-218. PubMed ID: 28142110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress.
    Islam F; Yasmeen T; Ali Q; Ali S; Arif MS; Hussain S; Rizvi H
    Ecotoxicol Environ Saf; 2014 Jun; 104():285-93. PubMed ID: 24726941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress.
    Fatnassi IC; Chiboub M; Saadani O; Jebara M; Jebara SH
    C R Biol; 2015 Apr; 338(4):241-54. PubMed ID: 25747267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of PGPR (
    Nawaz S; Bano A
    Recent Pat Food Nutr Agric; 2020; 11(2):124-136. PubMed ID: 31322080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alleviation of Salt Stress in Pepper (
    Hahm MS; Son JS; Hwang YJ; Kwon DK; Ghim SY
    J Microbiol Biotechnol; 2017 Oct; 27(10):1790-1797. PubMed ID: 28783895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidative defense mechanism against lead-induced phytotoxicity in Fagopyrum kashmirianum.
    Hakeem KR; Alharby HF; Rehman R
    Chemosphere; 2019 Feb; 216():595-604. PubMed ID: 30390590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa).
    Sapre S; Gontia-Mishra I; Tiwari S
    Microbiol Res; 2018 Jan; 206():25-32. PubMed ID: 29146257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and translocation of metals in Spinacia oleracea L. grown on tannery sludge-amended and contaminated soils: effect on lipid peroxidation, morpho-anatomical changes and antioxidants.
    Sinha S; Mallick S; Misra RK; Singh S; Basant A; Gupta AK
    Chemosphere; 2007 Feb; 67(1):176-87. PubMed ID: 17095039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three years of exposure to lead and elevated CO
    Jia X; Zhang C; Zhao Y; Liu T; He Y
    J Hazard Mater; 2018 May; 349():215-223. PubMed ID: 29427972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead accumulation in the roots of grass pea (Lathyrus sativus L.): a novel plant for phytoremediation systems?
    Brunet J; Repellin A; Varrault G; Terryn N; Zuily-Fodil Y
    C R Biol; 2008 Nov; 331(11):859-64. PubMed ID: 18940701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil.
    Ju W; Liu L; Fang L; Cui Y; Duan C; Wu H
    Ecotoxicol Environ Saf; 2019 Jan; 167():218-226. PubMed ID: 30342354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alleviation of lead-induced physiological, metabolic, and ultramorphological changes in leaves of upland cotton through glutathione.
    Khan M; Daud MK; Basharat A; Khan MJ; Azizullah A; Muhammad N; Muhammad N; Ur Rehman Z; Zhu SJ
    Environ Sci Pollut Res Int; 2016 May; 23(9):8431-40. PubMed ID: 26782322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.