BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 30292351)

  • 1. Synthetic Lethality and Cancer - Penetrance as the Major Barrier.
    Ryan CJ; Bajrami I; Lord CJ
    Trends Cancer; 2018 Oct; 4(10):671-683. PubMed ID: 30292351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying synthetic lethal targets using CRISPR/Cas9 system.
    Dhanjal JK; Radhakrishnan N; Sundar D
    Methods; 2017 Dec; 131():66-73. PubMed ID: 28710008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of synthetic lethality based on a functional network by using machine learning algorithms.
    Li J; Lu L; Zhang YH; Liu M; Chen L; Huang T; Cai YD
    J Cell Biochem; 2019 Jan; 120(1):405-416. PubMed ID: 30125975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Synthetic Lethal Interactions Using High-Throughput, Arrayed CRISPR/Cas9-Based Platforms.
    MacAuley MJ; Abuhussein O; Vizeacoumar FS
    Methods Mol Biol; 2021; 2381():135-149. PubMed ID: 34590274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. To Discover the Efficient and Novel Drug Targets in Human Cancers Using CRISPR/Cas Screening and Databases.
    Onishi I; Yamamoto K; Kinowaki Y; Kitagawa M; Kurata M
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
    Behan FM; Iorio F; Picco G; Gonçalves E; Beaver CM; Migliardi G; Santos R; Rao Y; Sassi F; Pinnelli M; Ansari R; Harper S; Jackson DA; McRae R; Pooley R; Wilkinson P; van der Meer D; Dow D; Buser-Doepner C; Bertotti A; Trusolino L; Stronach EA; Saez-Rodriguez J; Yusa K; Garnett MJ
    Nature; 2019 Apr; 568(7753):511-516. PubMed ID: 30971826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in synthetic lethality for cancer therapy: cellular mechanism and clinical translation.
    Topatana W; Juengpanich S; Li S; Cao J; Hu J; Lee J; Suliyanto K; Ma D; Zhang B; Chen M; Cai X
    J Hematol Oncol; 2020 Sep; 13(1):118. PubMed ID: 32883316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Road Map to Personalizing Targeted Cancer Therapies Using Synthetic Lethality.
    Parameswaran S; Kundapur D; Vizeacoumar FS; Freywald A; Uppalapati M; Vizeacoumar FJ
    Trends Cancer; 2019 Jan; 5(1):11-29. PubMed ID: 30616753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [CRISPR-Cas system as molecular scissors for gene therapy].
    Heinz GA; Mashreghi MF
    Z Rheumatol; 2017 Feb; 76(1):46-49. PubMed ID: 28124743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific Targeting of Oncogenes Using CRISPR Technology.
    Oppel F; Schürmann M; Goon P; Albers AE; Sudhoff H
    Cancer Res; 2018 Oct; 78(19):5506-5512. PubMed ID: 30194069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic lethality as an engine for cancer drug target discovery.
    Huang A; Garraway LA; Ashworth A; Weber B
    Nat Rev Drug Discov; 2020 Jan; 19(1):23-38. PubMed ID: 31712683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-cas9 genome editing delivery systems for targeted cancer therapy.
    Ghaemi A; Bagheri E; Abnous K; Taghdisi SM; Ramezani M; Alibolandi M
    Life Sci; 2021 Feb; 267():118969. PubMed ID: 33385410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on CRISPR/Cas: a versatile tool for cancer screening, diagnosis, and clinic treatment.
    Yang X; Zhang B
    Funct Integr Genomics; 2023 May; 23(2):182. PubMed ID: 37231285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme.
    Al-Sammarraie N; Ray SK
    Cells; 2021 Sep; 10(9):. PubMed ID: 34571991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WRN helicase is a synthetic lethal target in microsatellite unstable cancers.
    Chan EM; Shibue T; McFarland JM; Gaeta B; Ghandi M; Dumont N; Gonzalez A; McPartlan JS; Li T; Zhang Y; Bin Liu J; Lazaro JB; Gu P; Piett CG; Apffel A; Ali SO; Deasy R; Keskula P; Ng RWS; Roberts EA; Reznichenko E; Leung L; Alimova M; Schenone M; Islam M; Maruvka YE; Liu Y; Roper J; Raghavan S; Giannakis M; Tseng YY; Nagel ZD; D'Andrea A; Root DE; Boehm JS; Getz G; Chang S; Golub TR; Tsherniak A; Vazquez F; Bass AJ
    Nature; 2019 Apr; 568(7753):551-556. PubMed ID: 30971823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erratic journey of CRISPR/Cas9 in oncology from bench-work to successful-clinical therapy.
    Sarkar E; Khan A
    Cancer Treat Res Commun; 2021; 27():100289. PubMed ID: 33667951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic lethality: emerging targets and opportunities in melanoma.
    Thompson N; Adams DJ; Ranzani M
    Pigment Cell Melanoma Res; 2017 Mar; 30(2):183-193. PubMed ID: 28097822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approaches to identifying synthetic lethal interactions in cancer.
    Thompson JM; Nguyen QH; Singh M; Razorenova OV
    Yale J Biol Med; 2015 Jun; 88(2):145-55. PubMed ID: 26029013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.