These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 30292958)
1. In-vivo assessment of osseous versus non-osseous transmission pathways of vibratory stimuli applied to the bone and the dura in humans. Stump R; Dobrev I; Krayenbühl N; Probst R; Röösli C Hear Res; 2018 Dec; 370():40-52. PubMed ID: 30292958 [TBL] [Abstract][Full Text] [Related]
2. Generation of distortion product otoacoustic emissions in infants with a combined air and bone conduction stimulus. Lalos T; Dobrev I; Probst R; Röösli C Int J Pediatr Otorhinolaryngol; 2023 Aug; 171():111628. PubMed ID: 37329704 [TBL] [Abstract][Full Text] [Related]
3. Interaction between osseous and non-osseous vibratory stimulation of the human cadaveric head. Sim JH; Dobrev I; Gerig R; Pfiffner F; Stenfelt S; Huber AM; Röösli C Hear Res; 2016 Oct; 340():153-160. PubMed ID: 26807795 [TBL] [Abstract][Full Text] [Related]
4. Transmission pathways of vibratory stimulation as measured by subjective thresholds and distortion-product otoacoustic emissions. Watanabe T; Bertoli S; Probst R Ear Hear; 2008 Oct; 29(5):667-73. PubMed ID: 18596647 [TBL] [Abstract][Full Text] [Related]
5. Experimental investigation of promontory motion and intracranial pressure following bone conduction: Stimulation site and coupling type dependence. Dobrev I; Sim JH; Pfiffner F; Huber AM; Röösli C Hear Res; 2019 Jul; 378():108-125. PubMed ID: 30885510 [TBL] [Abstract][Full Text] [Related]
6. Bone conduction thresholds and skull vibration measured on the teeth during stimulation at different sites on the human head. Ito T; Röösli C; Kim CJ; Sim JH; Huber AM; Probst R Audiol Neurootol; 2011; 16(1):12-22. PubMed ID: 20453499 [TBL] [Abstract][Full Text] [Related]
7. Sound wave propagation on the human skull surface with bone conduction stimulation. Dobrev I; Sim JH; Stenfelt S; Ihrle S; Gerig R; Pfiffner F; Eiber A; Huber AM; Röösli C Hear Res; 2017 Nov; 355():1-13. PubMed ID: 28964568 [TBL] [Abstract][Full Text] [Related]
8. Mutual cancellation between tones presented by air conduction, by bone conduction and by non-osseous (soft tissue) bone conduction. Chordekar S; Kriksunov L; Kishon-Rabin L; Adelman C; Sohmer H Hear Res; 2012 Jan; 283(1-2):180-4. PubMed ID: 22037489 [TBL] [Abstract][Full Text] [Related]
9. Inner Ear Excitation in Normal and Postmastoidectomy Participants by Fluid Stimulation in the Absence of Air- and Bone-Conduction Mechanisms. Ronen O; Geal-Dor M; Kaufmann-Yehezkely M; Perez R; Chordekar S; Adelman C; Sohmer H J Am Acad Audiol; 2017 Feb; 28(2):152-160. PubMed ID: 28240982 [TBL] [Abstract][Full Text] [Related]
10. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults. Dreisbach LE; Long KM; Lees SE Ear Hear; 2006 Oct; 27(5):466-79. PubMed ID: 16957498 [TBL] [Abstract][Full Text] [Related]
11. Air conduction, bone conduction, and soft tissue conduction audiograms in normal hearing and simulated hearing losses. Adelman C; Cohen A; Regev-Cohen A; Chordekar S; Fraenkel R; Sohmer H J Am Acad Audiol; 2015 Jan; 26(1):101-8. PubMed ID: 25597465 [TBL] [Abstract][Full Text] [Related]
12. Factors affecting sensitivity of distortion-product otoacoustic emissions to ototoxic hearing loss. Reavis KM; Phillips DS; Fausti SA; Gordon JS; Helt WJ; Wilmington D; Bratt GW; Konrad-Martin D Ear Hear; 2008 Dec; 29(6):875-93. PubMed ID: 18753950 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity of distortion-product otoacoustic emissions in humans to tonal over-exposure: time course of recovery and effects of lowering L2. Sutton LA; Lonsbury-Martin BL; Martin GK; Whitehead ML Hear Res; 1994 May; 75(1-2):161-74. PubMed ID: 8071143 [TBL] [Abstract][Full Text] [Related]
14. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs. Moulin A J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802 [TBL] [Abstract][Full Text] [Related]
15. Human efferent adaptation of DPOAEs in the L1,L2 space. Meinke DK; Stagner BB; Martin GK; Lonsbury-Martin BL Hear Res; 2005 Oct; 208(1-2):89-100. PubMed ID: 16019174 [TBL] [Abstract][Full Text] [Related]
16. Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. I. Effects of decreasing L2 below L1. Whitehead ML; McCoy MJ; Lonsbury-Martin BL; Martin GK J Acoust Soc Am; 1995 Apr; 97(4):2346-58. PubMed ID: 7714254 [TBL] [Abstract][Full Text] [Related]
17. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans. Sun XM Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284 [TBL] [Abstract][Full Text] [Related]
18. 2f1-f2 distortion product otoacoustic emissions in White Leghorn chickens (Gallus domesticus): effects of frequency ratio and relative level. Burkard R; Salvi R; Chen L Audiol Neurootol; 1996; 1(4):197-213. PubMed ID: 9390802 [TBL] [Abstract][Full Text] [Related]
19. Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli. Stenfelt S; Puria S; Hato N; Goode RL Hear Res; 2003 Jul; 181(1-2):131-43. PubMed ID: 12855371 [TBL] [Abstract][Full Text] [Related]
20. Detection of hearing loss using 2f2-f1 and 2f1-f2 distortion-product otoacoustic emissions. Fitzgerald TS; Prieve BA J Speech Lang Hear Res; 2005 Oct; 48(5):1165-86. PubMed ID: 16411804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]