These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30292997)

  • 1. Comparison of sustainable biosorbents and ion-exchange resins to remove Sr
    Rae IB; Pap S; Svobodova D; Gibb SW
    Sci Total Environ; 2019 Feb; 650(Pt 2):2411-2422. PubMed ID: 30292997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media.
    Cochrane EL; Lu S; Gibb SW; Villaescusa I
    J Hazard Mater; 2006 Sep; 137(1):198-206. PubMed ID: 16530940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions.
    Oliveira WE; Franca AS; Oliveira LS; Rocha SD
    J Hazard Mater; 2008 Apr; 152(3):1073-81. PubMed ID: 17804159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Cesium and Strontium Ions from Aqueous Solutions by Thermally Treated Natural Zeolite.
    Șenilă M; Neag E; Tănăselia C; Șenilă L
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromium (III) uptake by agro-waste biosorbents: chemical characterization, sorption-desorption studies, and mechanism.
    Bernardo GR; Rene RM; Ma Catalina AD
    J Hazard Mater; 2009 Oct; 170(2-3):845-54. PubMed ID: 19523757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents.
    Xi Z; Chen B
    J Environ Sci (China); 2014 Apr; 26(4):737-48. PubMed ID: 25079403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: effects of resin properties and solution chemistry.
    Deng S; Yu Q; Huang J; Yu G
    Water Res; 2010 Oct; 44(18):5188-95. PubMed ID: 20605036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorbents for heavy metals removal and their future.
    Wang J; Chen C
    Biotechnol Adv; 2009; 27(2):195-226. PubMed ID: 19103274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Efficient Adsorption of Sr
    Huang YH; Wu YC
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The batch study of Sr(2+) sorption by bone char.
    Smiciklas I; Dimovic S; Sljivic M; Plecas I
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(2):210-7. PubMed ID: 18172814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of Cr(VI) from aqueous solutions by low-cost biosorbents: marine macroalgae and agricultural by-products.
    Wang XS; Li ZZ; Sun C
    J Hazard Mater; 2008 May; 153(3):1176-84. PubMed ID: 17997216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions.
    Ahmadpour A; Zabihi M; Tahmasbi M; Bastami TR
    J Hazard Mater; 2010 Oct; 182(1-3):552-6. PubMed ID: 20633988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient and irreversible capture of strontium ions from aqueous solution using metal-organic frameworks with ion trapping groups.
    Mu W; Du S; Li X; Yu Q; Hu R; Wei H; Yang Y; Peng S
    Dalton Trans; 2019 Mar; 48(10):3284-3290. PubMed ID: 30776035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing the removal of divalent cations by hydroxyapatite.
    Smiciklas I; Onjia A; Raicević S; Janaćković D; Mitrić M
    J Hazard Mater; 2008 Apr; 152(2):876-84. PubMed ID: 17764836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective removal of zinc ions from aqueous solutions using crab carapace biosorbent.
    Lu S; Gibb SW; Cochrane E
    J Hazard Mater; 2007 Oct; 149(1):208-17. PubMed ID: 17462821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physico-chemical studies in the removal of Sr(II) from aqueous solutions using activated sericite.
    Lalhmunsiama ; Tiwari D; Lee SM
    J Environ Radioact; 2015 Sep; 147():76-84. PubMed ID: 26048059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Chitosan/Iron Oxide Composites: Fabrication and Application for Removal of Sr
    Zemskova L; Egorin A; Tokar E; Ivanov V; Bratskaya S
    Biomimetics (Basel); 2018 Dec; 3(4):. PubMed ID: 31105260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash.
    Pehlivan E; Cetin S; Yanik BH
    J Hazard Mater; 2006 Jul; 135(1-3):193-9. PubMed ID: 16368188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins.
    Gode F; Pehlivan E
    J Hazard Mater; 2005 Mar; 119(1-3):175-82. PubMed ID: 15752863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of biosorbents with inorganic sorbents for removing copper(II) from aqueous solutions.
    Xiao F; Huang JC
    J Environ Manage; 2009 Jul; 90(10):3105-9. PubMed ID: 19515480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.