These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 30293030)
41. Aerobic granular sludge development using diatomite for low-strength wastewater treatment. Basri HF; Anuar AN; Halim MHA; Yuzir MA; Muda K; Omoregie AI; Najib MZM Environ Monit Assess; 2023 Feb; 195(3):420. PubMed ID: 36809517 [TBL] [Abstract][Full Text] [Related]
42. Enhanced aerobic granular sludge formation by applying Phanerochaete chrysosporium pellets as induced nucleus. Dong Y; Chen F; Li L; Yin Z; Zhang X Bioprocess Biosyst Eng; 2022 May; 45(5):815-828. PubMed ID: 35318496 [TBL] [Abstract][Full Text] [Related]
43. Mechanistic study on the ferric chloride-based rapid cultivation and enhancement of aerobic granular sludge. Lin Y; Wang Y; Wang W; Hao T; Su K Environ Technol; 2023 Sep; 44(21):3281-3293. PubMed ID: 35318893 [TBL] [Abstract][Full Text] [Related]
44. Deciphering the role of micro/nano-hydroxyapatite in aerobic granular sludge system: Effects on treatment performance and enhancement mechanism. Shi W; Tang Y; Liu Y; Fan J; Huang S; Guo Y; Zhang B; Lens PNL J Environ Manage; 2024 Aug; 366():121850. PubMed ID: 39018842 [TBL] [Abstract][Full Text] [Related]
45. Aerobic sludge granulation in shale gas flowback water treatment: Assessment of the bacterial community dynamics and modeling of bioreactor performance using artificial neural network. Liang J; Wang Q; Li QX; Jiang L; Kong J; Ke M; Arslan M; Gamal El-Din M; Chen C Bioresour Technol; 2020 Oct; 313():123687. PubMed ID: 32574748 [TBL] [Abstract][Full Text] [Related]
46. Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor. Oliveira AS; Amorim CL; Zlopasa J; van Loosdrecht M; Castro PML Chemosphere; 2021 Jul; 275():130037. PubMed ID: 33667767 [TBL] [Abstract][Full Text] [Related]
47. Carbon source affects the resource recovery in aerobic granular sludge systems treating wastewater. Ferreira Dos Santos A; Amancio Frutuoso FK; de Amorim de Carvalho C; Sousa Aguiar Lira VN; Mendes Barros AR; Bezerra Dos Santos A Bioresour Technol; 2022 Aug; 357():127355. PubMed ID: 35609753 [TBL] [Abstract][Full Text] [Related]
48. Development of a dynamic feeding strategy for continuous-flow aerobic granulation and nitrogen removal in a modified airlift loop reactor for municipal wastewater treatment. Li Y; Liu SJ; Chen FM; Zuo JE Sci Total Environ; 2020 Apr; 714():136764. PubMed ID: 31982758 [TBL] [Abstract][Full Text] [Related]
49. Full scale performance of the aerobic granular sludge process for sewage treatment. Pronk M; de Kreuk MK; de Bruin B; Kamminga P; Kleerebezem R; van Loosdrecht MC Water Res; 2015 Nov; 84():207-17. PubMed ID: 26233660 [TBL] [Abstract][Full Text] [Related]
50. Treatment of real domestic sewage in a pilot-scale aerobic granular sludge reactor: Assessing start-up and operational control. Campos F; Guimarães NR; Maia FC; Sandoval MZ; Bassin JP; Bueno RF; Piveli RP Water Environ Res; 2021 Jun; 93(6):896-905. PubMed ID: 33176037 [TBL] [Abstract][Full Text] [Related]
51. [Cultivation of Aerobic Granular Sludge with Real Low Concentration Domestic Wastewater and Its Denitrification Performances Under the Continuous Flow]. Yao L; Xin X; Lu H; Zhu LD; Xie SJ Huan Jing Ke Xue; 2015 Jul; 36(7):2626-32. PubMed ID: 26489334 [TBL] [Abstract][Full Text] [Related]
52. Influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules. Song Z; Li T; Wang Q; Pan Y; Li L J Environ Sci (China); 2015 Sep; 35():144-150. PubMed ID: 26354703 [TBL] [Abstract][Full Text] [Related]
53. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications. Nancharaiah YV; Kiran Kumar Reddy G Bioresour Technol; 2018 Jan; 247():1128-1143. PubMed ID: 28985995 [TBL] [Abstract][Full Text] [Related]
54. Long-term stability and nutrient removal efficiency of aerobic granules at low organic loads. Jafari Kang A; Yuan Q Bioresour Technol; 2017 Jun; 234():336-342. PubMed ID: 28340438 [TBL] [Abstract][Full Text] [Related]
55. Interaction and removal of oxytetracycline with aerobic granular sludge. He Q; Xie Z; Fu Z; Wang M; Xu P; Yu J; Ma J; Gao S; Chen L; Zhang W; Song J; Wang H Bioresour Technol; 2021 Jan; 320(Pt A):124358. PubMed ID: 33171347 [TBL] [Abstract][Full Text] [Related]
56. Influence of high temperature on the performance of aerobic granular sludge in biological treatment of wastewater. Ab Halim MH; Nor Anuar A; Abdul Jamal NS; Azmi SI; Ujang Z; Bob MM J Environ Manage; 2016 Dec; 184(Pt 2):271-280. PubMed ID: 27720606 [TBL] [Abstract][Full Text] [Related]
57. Assessing the effect of SiO Jiang Y; Shang Y; Zhang W; Zhang X; Li J; Shao S Chemosphere; 2022 Nov; 307(Pt 2):135677. PubMed ID: 35843432 [TBL] [Abstract][Full Text] [Related]
58. Effect of carbon source on pollutant removal and microbial community dynamics in treatment of swine wastewater containing antibiotics by aerobic granular sludge. Wang X; Chen Z; Shen J; Kang J; Zhang X; Li J; Zhao X Chemosphere; 2020 Dec; 260():127544. PubMed ID: 32673869 [TBL] [Abstract][Full Text] [Related]
59. Enhanced granulation of activated sludge in an airlift reactor for organic carbon removal and ammonia retention from industrial fermentation wastewater: A comparative study. Duan J; Kitamura K; Tsukamoto H; Van Phan H; Oba K; Hori T; Fujiwara T; Terada A Water Res; 2024 Mar; 251():121091. PubMed ID: 38244299 [TBL] [Abstract][Full Text] [Related]
60. Aerobic granular sludge shows enhanced resistances to the long-term toxicity of Cu(II). Jiang Y; Liu Y; Zhang H; Yang K; Li J; Shao S Chemosphere; 2020 Aug; 253():126664. PubMed ID: 32278915 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]