These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 30293419)
21. Chemical reactions at the graphitic step-edge: changes in product distribution of catalytic reactions as a tool to explore the environment within carbon nanoreactors. Lebedeva MA; Chamberlain TW; Thomas A; Thomas BE; Stoppiello CT; Volkova E; Suyetin M; Khlobystov AN Nanoscale; 2016 Jun; 8(22):11727-37. PubMed ID: 27222094 [TBL] [Abstract][Full Text] [Related]
22. Preparation of core-shell mesoporous silica nanoparticles with bimodal pore structures by regrowth method. Ishii H; Ikuno T; Shimojima A; Okubo T J Colloid Interface Sci; 2015 Jun; 448():57-64. PubMed ID: 25721856 [TBL] [Abstract][Full Text] [Related]
23. Porous-Carbon-Confined Formation of Monodisperse Iron Nanoparticle Yolks toward Versatile Nanoreactors for Metal Extraction. Wang Q; Luo W; Chen X; Fan J; Jiang W; Wang L; Jiang W; Zhang WX; Yang J Chemistry; 2018 Oct; 24(58):15663-15668. PubMed ID: 30113103 [TBL] [Abstract][Full Text] [Related]
24. Thermoswitchable catalysis controlled by reversible dispersion/aggregation change of nanoreactors in the presence of α-CD polymers. Li Y; Hu J; Niu C; Leng J; Li S Nanotechnology; 2018 Jun; 29(22):225501. PubMed ID: 29480812 [TBL] [Abstract][Full Text] [Related]
25. Hollow polymer particles with nanoscale pores and reactive groups on their rigid shells: preparation and application as nanoreactors. Deng J; Yu Y; Dun S; Yang W J Phys Chem B; 2010 Mar; 114(8):2593-601. PubMed ID: 20136107 [TBL] [Abstract][Full Text] [Related]
26. Assembling nanostructures for effective catalysis: supported palladium nanoparticle multicores coated by a hollow and nanoporous zirconia shell. Wang Y; Biradar AV; Asefa T ChemSusChem; 2012 Jan; 5(1):132-9. PubMed ID: 22095642 [TBL] [Abstract][Full Text] [Related]
27. Behavior of fluorescent molecules bound to the interior of silica nanocapsules in various solvents. Miyoshi H; Matsuo Y; Liu Y; Sakata T; Mori H J Colloid Interface Sci; 2009 Mar; 331(2):507-13. PubMed ID: 19136121 [TBL] [Abstract][Full Text] [Related]
28. Self-Assembly and Compartmentalization of Nanozymes in Mesoporous Silica-Based Nanoreactors. Huang Y; Lin Y; Ran X; Ren J; Qu X Chemistry; 2016 Apr; 22(16):5705-11. PubMed ID: 26934043 [TBL] [Abstract][Full Text] [Related]
29. Sonochemical Processes and Formation of Gold Nanoparticles within Pores of Mesoporous Silica. Chen W; Cai W; Zhang L; Wang G; Zhang L J Colloid Interface Sci; 2001 Jun; 238(2):291-295. PubMed ID: 11374924 [TBL] [Abstract][Full Text] [Related]
31. Dual latex/surfactant templating of hollow spherical silica particles with ordered mesoporous shells. Tan B; Rankin SE Langmuir; 2005 Aug; 21(18):8180-7. PubMed ID: 16114920 [TBL] [Abstract][Full Text] [Related]
32. Highly monodisperse rattle-structured nanomaterials with gold nanorod core-mesoporous silica shell as drug delivery vehicles and nanoreactors. Choi E; Kwak M; Jang B; Piao Y Nanoscale; 2013 Jan; 5(1):151-4. PubMed ID: 23154837 [TBL] [Abstract][Full Text] [Related]
33. Nanoreactors for simultaneous remote thermal activation and optical monitoring of chemical reactions. Vázquez-Vázquez C; Vaz B; Giannini V; Pérez-Lorenzo M; Alvarez-Puebla RA; Correa-Duarte MA J Am Chem Soc; 2013 Sep; 135(37):13616-9. PubMed ID: 24044481 [TBL] [Abstract][Full Text] [Related]
34. Evaluating the effects of carbon nanoreactor diameter and internal structure on the pathways of the catalytic hydrosilylation reaction. Solomonsz WA; Rance GA; Khlobystov AN Small; 2014 May; 10(9):1866-72. PubMed ID: 24914447 [TBL] [Abstract][Full Text] [Related]
35. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution. Petala E; Dimos K; Douvalis A; Bakas T; Tucek J; Zbořil R; Karakassides MA J Hazard Mater; 2013 Oct; 261():295-306. PubMed ID: 23959249 [TBL] [Abstract][Full Text] [Related]
36. Ceria loaded nanoreactors: a nontoxic superantioxidant system with high stability and efficacy. Spulber M; Baumann P; Liu J; Palivan CG Nanoscale; 2015 Jan; 7(4):1411-23. PubMed ID: 25501999 [TBL] [Abstract][Full Text] [Related]
37. Pd nanoparticles in silica hollow spheres with mesoporous walls: a nanoreactor with extremely high activity. Chen Z; Cui ZM; Niu F; Jiang L; Song WG Chem Commun (Camb); 2010 Sep; 46(35):6524-6. PubMed ID: 20714555 [TBL] [Abstract][Full Text] [Related]
38. DNA-Programmed Lipid Nanoreactors for Synthesis of Carbohydrate Mimetics by Fusion of Aqueous Sub-attoliter Compartments. Tian X; Risgaard NA; Löffler PMG; Vogel S J Am Chem Soc; 2023 Sep; 145(36):19633-19641. PubMed ID: 37619973 [TBL] [Abstract][Full Text] [Related]
39. Mesoporous silica coated silica-titania spherical particles: from impregnation to core-shell formation. Shiba K; Takei T; Ogawa M Dalton Trans; 2016 Nov; 45(46):18742-18749. PubMed ID: 27841410 [TBL] [Abstract][Full Text] [Related]
40. Size-controlled synthesis of conjugated polymer nanoparticles in confined nanoreactors. Deng S; Zhi J; Zhang X; Wu Q; Ding Y; Hu A Angew Chem Int Ed Engl; 2014 Dec; 53(51):14144-8. PubMed ID: 25318981 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]