BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30293555)

  • 1. Clopidogrel Partially Counteracts Adenosine-5'-Diphosphate Effects on Blood Pressure and Renal Hemodynamics and Excretion in Rats.
    Roszkowska-Chojecka MM; Walkowska A; Sadowski J; Dobrowolski L
    Am J Med Sci; 2018 Sep; 356(3):287-295. PubMed ID: 30293555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ATP on rat renal haemodynamics and excretion: role of sodium intake, nitric oxide and cytochrome P450.
    Dobrowolski L; Walkowska A; Kompanowska-Jezierska E; Kuczeriszka M; Sadowski J
    Acta Physiol (Oxf); 2007 Jan; 189(1):77-85. PubMed ID: 17280559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical and medullary hemodynamics in deoxycorticosterone acetate-salt hypertensive mice.
    Gross V; Lippoldt A; Bohlender J; Bader M; Hansson A; Luft FC
    J Am Soc Nephrol; 1998 Mar; 9(3):346-54. PubMed ID: 9513896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of P2X receptors on renal medullary circulation is not altered by angiotensin II pretreatment.
    Kuczeriszka M; Dobrowolski L; Walkowska A; Sadowski J
    Pharmacol Rep; 2016 Dec; 68(6):1230-1236. PubMed ID: 27682519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine effects on renal function in the rat: role of sodium intake and cytochrome P450.
    Kuczeriszka M; Dobrowolski L; Walkowska A; Sadowski J; Kompanowska-Jezierska E
    Nephron Physiol; 2013; 123(1-2):1-5. PubMed ID: 23887028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of renal medullary adenosine in the control of blood flow and sodium excretion.
    Zou AP; Nithipatikom K; Li PL; Cowley AW
    Am J Physiol; 1999 Mar; 276(3):R790-8. PubMed ID: 10070140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clopidogrel, independent of the vascular P2Y12 receptor, improves arterial function in small mesenteric arteries from AngII-hypertensive rats.
    Giachini FR; Osmond DA; Zhang S; Carneiro FS; Lima VV; Inscho EW; Webb RC; Tostes RC
    Clin Sci (Lond); 2010 Apr; 118(7):463-71. PubMed ID: 19811450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of NO and COX pathways in mediation of adenosine A1 receptor-induced renal vasoconstriction.
    Walkowska A; Dobrowolski L; Kompanowska-Jezierska E; Sadowski J
    Exp Biol Med (Maywood); 2007 May; 232(5):690-4. PubMed ID: 17463166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of CS-905, a novel dihydropyridine calcium channel blocker, on arterial pressure, renal excretory function, and inner medullary blood flow in the rat.
    Yagil Y; Miyamoto M; Frasier L; Oizumi K; Koike H
    Am J Hypertens; 1994 Jul; 7(7 Pt 1):637-46. PubMed ID: 7946166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diabetes Affects the A1 Adenosine Receptor-Dependent Action of Diadenosine Tetraphosphate (Ap4A) on Cortical and Medullary Renal Blood Flow.
    Kreft E; Sałaga-Zaleska K; Sakowicz-Burkiewicz M; Dąbkowski K; Szczepánska-Konkel M; Jankowski M
    J Vasc Res; 2021; 58(1):38-48. PubMed ID: 33207336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposed effects of prostaglandin E2 on perfusion of rat renal cortex and medulla: interactions with the renin-angiotensin system.
    Badzynska B; Sadowski J
    Exp Physiol; 2008 Dec; 93(12):1292-302. PubMed ID: 18586855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disparate roles of AT2 receptors in the renal cortical and medullary circulations of anesthetized rabbits.
    Duke LM; Eppel GA; Widdop RE; Evans RG
    Hypertension; 2003 Aug; 42(2):200-5. PubMed ID: 12847115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal medullary infusion of indomethacin and adenosine. Effects on local blood flow, tissue ion content and renal excretion.
    Dobrowolski L; Sadowski J
    Kidney Blood Press Res; 2004; 27(1):29-34. PubMed ID: 14679312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal cortical and medullary blood flow responses during water restriction: role of vasopressin.
    Franchini KG; Cowley AW
    Am J Physiol; 1996 Jun; 270(6 Pt 2):R1257-64. PubMed ID: 8764292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between renal perfusion pressure and blood flow in different regions of the kidney.
    Mattson DL; Lu S; Roman RJ; Cowley AW
    Am J Physiol; 1993 Mar; 264(3 Pt 2):R578-83. PubMed ID: 8457011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional vascular responses to ATP and ATP analogues in the rabbit kidney in vivo: roles for adenosine receptors and prostanoids.
    Eppel GA; Ventura S; Evans RG
    Br J Pharmacol; 2006 Nov; 149(5):523-31. PubMed ID: 16981003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atriopeptins and renal cortical and papillary blood flow.
    Hansell P; Ulfendahl HR
    Acta Physiol Scand; 1986 Jul; 127(3):349-57. PubMed ID: 2944351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vasopressin modulation of medullary blood flow and pressure-natriuresis-diuresis in the decerebrated rat.
    Franchini KG; Mattson DL; Cowley AW
    Am J Physiol; 1997 May; 272(5 Pt 2):R1472-9. PubMed ID: 9176339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An endomorphine analog ([d-Ala(2)]-Endomorphin 2, TAPP) lowers blood pressure and enhances tissue nitric oxide in anesthetized rats.
    Kuczeriszka M; Lipkowski AW; Sadowski J; Kompanowska-Jezierska E
    Pharmacol Rep; 2016 Jun; 68(3):616-9. PubMed ID: 26977822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional role of ETB receptors in the renal medulla.
    Vassileva I; Mountain C; Pollock DM
    Hypertension; 2003 Jun; 41(6):1359-63. PubMed ID: 12719443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.