These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3029358)

  • 1. Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric study.
    Holmes RE; Bucholz RW; Mooney V
    J Orthop Res; 1987; 5(1):114-21. PubMed ID: 3029358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study.
    Holmes RE; Bucholz RW; Mooney V
    J Bone Joint Surg Am; 1986 Jul; 68(6):904-11. PubMed ID: 3015975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model. Radiographic-histometric correlation.
    Sartoris DJ; Holmes RE; Bucholz RW; Mooney V; Resnick D
    Invest Radiol; 1987 Jul; 22(7):590-6. PubMed ID: 3623863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous hydroxyapatite as a bone graft substitute in alveolar ridge augmentation: a histometric study.
    Holmes RE; Roser SM
    Int J Oral Maxillofac Surg; 1987 Dec; 16(6):718-28. PubMed ID: 2830350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous hydroxyapatite as a bone graft substitute in cranial reconstruction: a histometric study.
    Holmes RE; Hagler HK
    Plast Reconstr Surg; 1988 May; 81(5):662-71. PubMed ID: 2834761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous hydroxyapatite as a bone graft substitute in maxillary augmentation. An histometric study.
    Holmes R; Hagler H
    J Craniomaxillofac Surg; 1988 Jul; 16(5):199-205. PubMed ID: 2900254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous hydroxylapatite as a bone graft substitute in mandibular contour augmentation: a histometric study.
    Holmes RE; Hagler HK
    J Oral Maxillofac Surg; 1987 May; 45(5):421-9. PubMed ID: 3033188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A comparative morphometric and histologic study of five bone substitute materials].
    Chen L; Klaes W; Assenmacher S
    Zhonghua Yi Xue Za Zhi; 1996 Jul; 76(7):527-30. PubMed ID: 9275505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term study of large ceramic implants (porous hydroxyapatite) in dog femora.
    Hoogendoorn HA; Renooij W; Akkermans LM; Visser W; Wittebol P
    Clin Orthop Relat Res; 1984; (187):281-8. PubMed ID: 6744731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bony healing of large cranial and mandibular defects protected from soft-tissue interposition: A comparative study of spontaneous bone regeneration, osteoconduction, and cancellous autografting in dogs.
    Lemperle SM; Calhoun CJ; Curran RW; Holmes RE
    Plast Reconstr Surg; 1998 Mar; 101(3):660-72. PubMed ID: 9500382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calvarial reconstruction in baboons with porous hydroxyapatite.
    Ripamonti U
    J Craniofac Surg; 1992 Nov; 3(3):149-59. PubMed ID: 1338494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adjuvant therapies of bone graft around non-cemented experimental orthopedic implants stereological methods and experiments in dogs.
    Baas J
    Acta Orthop Suppl; 2008 Aug; 79(330):1-43. PubMed ID: 19065776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of tissue reaction and osteointegration of metal implants between hydroxyapatite/Ti alloy coat: an animal experimental study.
    Itiravivong P; Promasa A; Laiprasert T; Techapongworachai T; Kuptniratsaikul S; Thanakit V; Heimann RB
    J Med Assoc Thai; 2003 Jun; 86 Suppl 2():S422-31. PubMed ID: 12930020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes.
    Hing KA; Best SM; Tanner KE; Bonfield W; Revell PA
    J Biomed Mater Res A; 2004 Jan; 68(1):187-200. PubMed ID: 14661264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation.
    Martin RB; Chapman MW; Sharkey NA; Zissimos SL; Bay B; Shors EC
    Biomaterials; 1993 Apr; 14(5):341-8. PubMed ID: 8389612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model.
    Stubbs D; Deakin M; Chapman-Sheath P; Bruce W; Debes J; Gillies RM; Walsh WR
    Biomaterials; 2004 Sep; 25(20):5037-44. PubMed ID: 15109866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study.
    Schliephake H; Neukam FW; Klosa D
    Int J Oral Maxillofac Surg; 1991 Feb; 20(1):53-8. PubMed ID: 1850445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histomorphometric description of allograft bone remodeling and union in a canine segmental femoral defect model: a comparison of rhBMP-2, cancellous bone graft, and absorbable collagen sponge.
    Zabka AG; Pluhar GE; Edwards RB; Manley PA; Hayashi K; Heiner JP; Kalscheur VL; Seeherman HJ; Markel
    J Orthop Res; 2001 Mar; 19(2):318-27. PubMed ID: 11347707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of platelet-rich plasma added to xenogeneic bone grafts on bone mineral density associated with dental implants.
    Sánchez AR; Eckert SE; Sheridan PJ; Weaver AL
    Int J Oral Maxillofac Implants; 2005; 20(4):526-32. PubMed ID: 16161736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of autologous cancellous bone particles in long bone discontinuity defects.
    Velasco RU; Habal MB; Spiegel PG; Lotz M; Leake DL
    Clin Orthop Relat Res; 1983; (177):264-73. PubMed ID: 6222859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.