These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
468 related articles for article (PubMed ID: 30293660)
1. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
2. Ocean acidification affects parameters of immune response and extracellular pH in tropical sea urchins Lytechinus variegatus and Echinometra luccunter. Leite Figueiredo DA; Branco PC; Dos Santos DA; Emerenciano AK; Iunes RS; Shimada Borges JC; Machado Cunha da Silva JR Aquat Toxicol; 2016 Nov; 180():84-94. PubMed ID: 27684601 [TBL] [Abstract][Full Text] [Related]
3. Contrasting effects of ocean warming on different components of plant-herbivore interactions. Pagès JF; Smith TM; Tomas F; Sanmartí N; Boada J; De Bari H; Pérez M; Romero J; Arthur R; Alcoverro T Mar Pollut Bull; 2018 Sep; 134():55-65. PubMed ID: 29074253 [TBL] [Abstract][Full Text] [Related]
4. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Kim JH; Kim N; Moon H; Lee S; Jeong SY; Diaz-Pulido G; Edwards MS; Kang JH; Kang EJ; Oh HJ; Hwang JD; Kim IN Mar Pollut Bull; 2020 Aug; 157():111324. PubMed ID: 32658689 [TBL] [Abstract][Full Text] [Related]
5. Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain. Martínez-Crego B; Vizzini S; Califano G; Massa-Gallucci A; Andolina C; Gambi MC; Santos R Sci Rep; 2020 Mar; 10(1):5103. PubMed ID: 32198395 [TBL] [Abstract][Full Text] [Related]
6. Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate. Carey N; Harianto J; Byrne M J Exp Biol; 2016 Apr; 219(Pt 8):1178-86. PubMed ID: 26896541 [TBL] [Abstract][Full Text] [Related]
7. Direct and indirect effects of ocean acidification and warming on a marine plant-herbivore interaction. Poore AG; Graba-Landry A; Favret M; Sheppard Brennand H; Byrne M; Dworjanyn SA Oecologia; 2013 Nov; 173(3):1113-24. PubMed ID: 23673470 [TBL] [Abstract][Full Text] [Related]
8. Boosted nutritional quality of food by CO Leung JYS; Nagelkerken I; Russell BD; Ferreira CM; Connell SD Sci Total Environ; 2018 Oct; 639():360-366. PubMed ID: 29791888 [TBL] [Abstract][Full Text] [Related]
9. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients. Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495 [TBL] [Abstract][Full Text] [Related]
11. Physiological response of the coralline alga Corallina officinalis L. to both predicted long-term increases in temperature and short-term heatwave events. Rendina F; Bouchet PJ; Appolloni L; Russo GF; Sandulli R; Kolzenburg R; Putra A; Ragazzola F Mar Environ Res; 2019 Sep; 150():104764. PubMed ID: 31376632 [TBL] [Abstract][Full Text] [Related]
12. Sea urchins in a high-CO2 world: the influence of acclimation on the immune response to ocean warming and acidification. Brothers CJ; Harianto J; McClintock JB; Byrne M Proc Biol Sci; 2016 Aug; 283(1837):. PubMed ID: 27559066 [TBL] [Abstract][Full Text] [Related]
13. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma). Wolfe K; Dworjanyn SA; Byrne M Glob Chang Biol; 2013 Sep; 19(9):2698-707. PubMed ID: 23649847 [TBL] [Abstract][Full Text] [Related]
14. Major loss of coralline algal diversity in response to ocean acidification. Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846 [TBL] [Abstract][Full Text] [Related]
15. Direct and indirect impacts of ocean acidification and warming on algae-herbivore interactions in intertidal habitats. Benítez S; Navarro JM; Mardones D; Villanueva PA; Ramirez-Kushel F; Torres R; Lagos NA Mar Pollut Bull; 2023 Oct; 195():115549. PubMed ID: 37729690 [TBL] [Abstract][Full Text] [Related]
16. Future warming and acidification result in multiple ecological impacts to a temperate coralline alga. Huggett MJ; McMahon K; Bernasconi R Environ Microbiol; 2018 Aug; 20(8):2769-2782. PubMed ID: 29575500 [TBL] [Abstract][Full Text] [Related]
17. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376 [TBL] [Abstract][Full Text] [Related]
18. Altered epiphyte community and sea urchin diet in Posidonia oceanica meadows in the vicinity of volcanic CO Nogueira P; Gambi MC; Vizzini S; Califano G; Tavares AM; Santos R; Martínez-Crego B Mar Environ Res; 2017 Jun; 127():102-111. PubMed ID: 28413104 [TBL] [Abstract][Full Text] [Related]
19. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae). Raddatz S; Guy-Haim T; Rilov G; Wahl M J Phycol; 2017 Feb; 53(1):44-58. PubMed ID: 27711971 [TBL] [Abstract][Full Text] [Related]
20. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. Sheppard Brennand H; Soars N; Dworjanyn SA; Davis AR; Byrne M PLoS One; 2010 Jun; 5(6):e11372. PubMed ID: 20613879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]