BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30293966)

  • 1. The oligomeric plasticity of Hsp20 of Sulfolobus acidocaldarius protects environment-induced protein aggregation and membrane destabilization.
    Roy M; Gupta S; Patranabis S; Ghosh A
    Biochim Biophys Acta Biomembr; 2018 Dec; 1860(12):2549-2565. PubMed ID: 30293966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Archaeal Hsp14 drives substrate shuttling between small heat shock proteins and thermosome: insights into a novel substrate transfer pathway.
    Roy M; Bhakta K; Bhowmick A; Gupta S; Ghosh A; Ghosh A
    FEBS J; 2022 Feb; 289(4):1080-1104. PubMed ID: 34637594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimer structure and conformational variability in the N-terminal region of an archaeal small heat shock protein, StHsp14.0.
    Takeda K; Hayashi T; Abe T; Hirano Y; Hanazono Y; Yohda M; Miki K
    J Struct Biol; 2011 Apr; 174(1):92-9. PubMed ID: 21195185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural studies on the oligomeric transition of a small heat shock protein, StHsp14.0.
    Hanazono Y; Takeda K; Yohda M; Miki K
    J Mol Biol; 2012 Sep; 422(1):100-8. PubMed ID: 22613762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure and function of an unusual dimeric Hsp20.1 provide insight into the thermal protection mechanism of small heat shock proteins.
    Liu L; Chen J; Yang B; Wang Y
    Biochem Biophys Res Commun; 2015 Mar; 458(2):429-34. PubMed ID: 25660449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calditol-linked membrane lipids are required for acid tolerance in
    Zeng Z; Liu XL; Wei JH; Summons RE; Welander PV
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):12932-12937. PubMed ID: 30518563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural dynamics of archaeal small heat shock proteins.
    Haslbeck M; Kastenmüller A; Buchner J; Weinkauf S; Braun N
    J Mol Biol; 2008 Apr; 378(2):362-74. PubMed ID: 18353362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure perturbation and differential scanning calorimetric studies of bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius.
    Chong PL; Ravindra R; Khurana M; English V; Winter R
    Biophys J; 2005 Sep; 89(3):1841-9. PubMed ID: 15980181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into subunit interactions in the Sulfolobus acidocaldarius archaellum cytoplasmic complex.
    Banerjee A; Neiner T; Tripp P; Albers SV
    FEBS J; 2013 Dec; 280(23):6141-9. PubMed ID: 24103130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat shock response in Sulfolobus acidocaldarius and first implications for cross-stress adaptation.
    Bhowmick A; Bhakta K; Roy M; Gupta S; Das J; Samanta S; Patranabis S; Ghosh A
    Res Microbiol; 2023; 174(8):104106. PubMed ID: 37516156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Certain, but Not All, Tetraether Lipids from the Thermoacidophilic Archaeon
    Bonanno A; Chong PL
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2.
    Li DC; Yang F; Lu B; Chen DF; Yang WJ
    Cell Stress Chaperones; 2012 Jan; 17(1):103-8. PubMed ID: 21853411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of a potential salt bridge and hydrophobic core in the function and oligomerization of a small heat shock protein.
    Wen Z; Wang Y; Xu X; Yang B; Li W; Xie M
    Protein Pept Lett; 2010 Jun; 17(6):751-8. PubMed ID: 20015024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression, Purification, and Assembly of Archaellum Subcomplexes of Sulfolobus acidocaldarius.
    Chaudhury P; Tripp P; Albers SV
    Methods Mol Biol; 2018; 1764():307-314. PubMed ID: 29605923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway.
    Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511
    [No Abstract]   [Full Text] [Related]  

  • 16. Engineering of a Polydisperse Small Heat-Shock Protein Reveals Conserved Motifs of Oligomer Plasticity.
    Mishra S; Chandler SA; Williams D; Claxton DP; Koteiche HA; Stewart PL; Benesch JLP; Mchaourab HS
    Structure; 2018 Aug; 26(8):1116-1126.e4. PubMed ID: 29983375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligomer-dependent and -independent chaperone activity of sHsps in different stressed conditions.
    Liu L; Chen J; Yang B; Wang Y
    FEBS Open Bio; 2015; 5():155-62. PubMed ID: 25834780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. StHsp14.0, a small heat shock protein of Sulfolobus tokodaii strain 7, protects denatured proteins from aggregation in the partially dissociated conformation.
    Abe T; Oka T; Nakagome A; Tsukada Y; Yasunaga T; Yohda M
    J Biochem; 2011 Oct; 150(4):403-9. PubMed ID: 21659385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterization and helix stabilizing properties of HSNP-C' from the thermoacidophilic archaeon Sulfolobus acidocaldarius.
    Celestina F; Suryanarayana T
    Biochem Biophys Res Commun; 2000 Jan; 267(2):614-8. PubMed ID: 10631111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of the leucine transport system of Lactococcus lactis into liposomes composed of membrane-spanning lipids from Sulfolobus acidocaldarius.
    In't Veld G; Elferink MG; Driessen AJ; Konings WN
    Biochemistry; 1992 Dec; 31(49):12493-9. PubMed ID: 1463735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.