BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30294558)

  • 1. Standard method for microCT-based additive manufacturing quality control 3: Surface roughness.
    Plessis AD; Sperling P; Beerlink A; Kruger O; Tshabalala L; Hoosain S; le Roux SG
    MethodsX; 2018; 5():1111-1116. PubMed ID: 30294558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standard method for microCT-based additive manufacturing quality control 1: Porosity analysis.
    du Plessis A; Sperling P; Beerlink A; Tshabalala L; Hoosain S; Mathe N; le Roux SG
    MethodsX; 2018; 5():1102-1110. PubMed ID: 30271722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standard method for microCT-based additive manufacturing quality control 2: Density measurement.
    du Plessis A; Sperling P; Beerlink A; Tshabalala L; Hoosain S; Mathe N; le Roux SG
    MethodsX; 2018; 5():1117-1123. PubMed ID: 30294559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standard method for microCT-based additive manufacturing quality control 4: Metal powder analysis.
    du Plessis A; Sperling P; Beerlink A; du Preez WB; le Roux SG
    MethodsX; 2018; 5():1336-1345. PubMed ID: 30406023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray tomography for the advancement of laser powder bed fusion additive manufacturing.
    DU Plessis A
    J Microsc; 2022 Mar; 285(3):121-130. PubMed ID: 32496595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Areal Surface Roughness Optimization of Maraging Steel Parts Produced by Hybrid Additive Manufacturing.
    Wüst P; Edelmann A; Hellmann R
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser ultrasonic imaging for defect detection on metal additive manufacturing components with rough surfaces.
    Zhang J; Wu J; Zhao X; Yuan S; Ma G; Li J; Dai T; Chen H; Yang B; Ding H
    Appl Opt; 2020 Nov; 59(33):10380-10388. PubMed ID: 33361969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of Structural Properties Using Process Parameters and Surface Treatment of Monolithic and Thin-Walled Parts Obtained by Selective Laser Melting.
    Grzelak K; Kluczyński J; Szachogłuchowicz I; Łuszczek J; Śnieżek L; Torzewski J
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33322451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Roughness Characterisation and Analysis of the Electron Beam Melting (EBM) Process.
    Galati M; Minetola P; Rizza G
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31323959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Methodology for Evaluating Surface Quality of Experimental Aerodynamic Models Manufactured by Polymer Jetting Additive Manufacturing.
    Udroiu R
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur.
    Cohen DJ; Cheng A; Sahingur K; Clohessy RM; Hopkins LB; Boyan BD; Schwartz Z
    Biomed Mater; 2017 Apr; 12(2):025021. PubMed ID: 28452335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting.
    Obeidi MA; McCarthy E; O'Connell B; Ul Ahad I; Brabazon D
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30917513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Density, Roughness, and Accuracy of the Atomic Diffusion Additive Manufacturing (ADAM) Process for Metal Parts.
    Galati M; Minetola P
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Looking deep into nature: A review of micro-computed tomography in biomimicry.
    du Plessis A; Broeckhoven C
    Acta Biomater; 2019 Feb; 85():27-40. PubMed ID: 30543937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tactile perception of the roughness of 3D-printed textures.
    Tymms C; Zorin D; Gardner EP
    J Neurophysiol; 2018 Mar; 119(3):862-876. PubMed ID: 29167326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific retention of colloids at rough rock surfaces.
    Darbha GK; Fischer C; Luetzenkirchen J; Schäfer T
    Environ Sci Technol; 2012 Sep; 46(17):9378-87. PubMed ID: 22861645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Powder Deposition on Powder Bed and Specimen Properties.
    Beitz S; Uerlich R; Bokelmann T; Diener A; Vietor T; Kwade A
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of X-Ray Computed Tomography Acquisition Parameters on Image Quality and Probability of Detection of Additive Manufacturing Defects.
    Kim FH; Pintar AL; Moylan SP; Garboczi EJ
    J Manuf Sci Eng; 2019 Nov; 141(11):. PubMed ID: 34131380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface parameters of as-built additive manufactured metal for intraosseous dental implants.
    Dos Santos LCP; Malheiros FC; Guarato AZ
    J Prosthet Dent; 2020 Aug; 124(2):217-222. PubMed ID: 31759564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the Quality Surface Performance of Additive Manufacturing Systems: Methodology and a Material Jetting Case Study.
    Udroiu R; Braga IC; Nedelcu A
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30917576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.