These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30294739)

  • 41. Tunable phonon-induced transparency in bilayer graphene nanoribbons.
    Yan H; Low T; Guinea F; Xia F; Avouris P
    Nano Lett; 2014 Aug; 14(8):4581-6. PubMed ID: 25019702
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Numerical and Theoretical Study of Tunable Plasmonically Induced Transparency Effect Based on Bright-Dark Mode Coupling in Graphene Metasurface.
    Ma Q; Dai J; Luo A; Hong W
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32013078
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of symmetry breaking on multi-plasmon-induced transparency based on single-layer graphene metamaterials with strips and rings.
    Yang G; Liu Z; Zhou F; Zhuo S; Qin Y; Luo X; Ji C; Xie Y; Yang R
    J Opt Soc Am A Opt Image Sci Vis; 2023 May; 40(5):841-848. PubMed ID: 37133181
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamically controllable multi-switch and slow light based on a pyramid-shaped monolayer graphene metamaterial.
    Xiong C; Chao L; Zeng B; Wu K; Li M; Ruan B; Zhang B; Gao E; Li H
    Phys Chem Chem Phys; 2021 Feb; 23(6):3949-3962. PubMed ID: 33544099
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows.
    Zhao Z; Zhao H; Ako RT; Zhang J; Zhao H; Sriram S
    Opt Express; 2019 Sep; 27(19):26459-26470. PubMed ID: 31674527
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Broadband plasmon induced transparency in terahertz metamaterials.
    Zhu Z; Yang X; Gu J; Jiang J; Yue W; Tian Z; Tonouchi M; Han J; Zhang W
    Nanotechnology; 2013 May; 24(21):214003. PubMed ID: 23618809
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Slow-light analysis based on tunable plasmon-induced transparency in patterned black phosphorus metamaterial.
    Wu K; Li H; Liu C; Xiong C; Ruan B; Li M; Gao E; Zhang B
    J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):412-418. PubMed ID: 33690472
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Graphene-Modulated Terahertz Metasurfaces for Selective and Active Control of Dual-Band Electromagnetic Induced Reflection (EIR) Windows.
    He X; Sun C; Wang Y; Lu G; Jiang J; Yang Y; Gao Y
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multifunctional and tunable trigate graphene metamaterial with "Lakes of Wada" topology.
    Liu Y; Xu X; Yang D; Zhang X; Ren M; Gong N; Cai W; Hassan F; Zhu Z; Drevenšek-Olenik I; Rupp RA; Xu J
    Opt Express; 2020 Aug; 28(17):24772-24788. PubMed ID: 32907010
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Symmetry breaking induced excitations of dark plasmonic modes in multilayer graphene ribbons.
    Dai YY; Chen A; Xia YY; Han DZ; Liu XH; Shi L; Zi J
    Opt Express; 2016 Sep; 24(18):20021-8. PubMed ID: 27607610
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tunable electromagnetically induced transparency based on graphene metamaterials.
    Xiao B; Tong S; Fyffe A; Shi Z
    Opt Express; 2020 Feb; 28(3):4048-4057. PubMed ID: 32122064
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamically Tunable Plasmon-Induced Transparency in On-chip Graphene-Based Asymmetrical Nanocavity-Coupled Waveguide System.
    Qiu P; Qiu W; Lin Z; Chen H; Ren J; Wang JX; Kan Q; Pan JQ
    Nanoscale Res Lett; 2017 Dec; 12(1):374. PubMed ID: 28549379
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two Switchable Plasmonically Induced Transparency Effects in a System with Distinct Graphene Resonators.
    Guan J; Xia S; Zhang Z; Wu J; Meng H; Yue J; Zhai X; Wang L; Wen S
    Nanoscale Res Lett; 2020 Jul; 15(1):142. PubMed ID: 32621110
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasmon-induced transparency in coupled triangle-rod arrays.
    Si GY; Leong ES; Pan W; Chum CC; Liu YJ
    Nanotechnology; 2015 Jan; 26(2):025201. PubMed ID: 25502474
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamically controllable plasmon induced transparency based on hybrid metal-graphene metamaterials.
    Yan X; Wang T; Xiao S; Liu T; Hou H; Cheng L; Jiang X
    Sci Rep; 2017 Oct; 7(1):13917. PubMed ID: 29066769
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal-graphene hybridized plasmon induced transparency in the terahertz frequencies.
    Yu A; Guo X; Zhu Y; Balakin AV; Shkurinov AP
    Opt Express; 2019 Nov; 27(24):34731-34741. PubMed ID: 31878657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasmon resonances in a stacked pair of graphene ribbon arrays with a lateral displacement.
    He MD; Zhang G; Liu JQ; Li JB; Wang XJ; Huang ZR; Wang L; Chen X
    Opt Express; 2014 Mar; 22(6):6680-90. PubMed ID: 24664017
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical control of terahertz plasmon-induced transparency based on hybrid CsPbBr
    Yang Y; Li J; Li J; Huang J; Li Q; Zhang Y; Dai H; Yao J
    Opt Express; 2020 Aug; 28(16):24047-24055. PubMed ID: 32752390
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tunable plasmon lensing in graphene-based structure exhibiting negative refraction.
    Zhong S; Lu Y; Li C; Xu H; Shi F; Chen Y
    Sci Rep; 2017 Feb; 7():41788. PubMed ID: 28150750
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tunable plasmon-induced absorption in an integrated graphene nanoribbon side-coupled waveguide.
    Lin Q; Zhai X; Su Y; Meng H; Wang L
    Appl Opt; 2017 Dec; 56(34):9536-9541. PubMed ID: 29216070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.