These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 30294743)
1. Significant effect of Mg-pressure-controlled annealing: non-stoichiometry and thermoelectric properties of Mg Kato D; Iwasaki K; Yoshino M; Yamada T; Nagasaki T Phys Chem Chem Phys; 2018 Oct; 20(40):25939-25950. PubMed ID: 30294743 [TBL] [Abstract][Full Text] [Related]
2. Phase Segregation and Superior Thermoelectric Properties of Mg2Si(1-x)Sb(x) (0 ≤ x ≤ 0.025) Prepared by Ultrafast Self-Propagating High-Temperature Synthesis. Zhang Q; Su X; Yan Y; Xie H; Liang T; You Y; Tang X; Uher C ACS Appl Mater Interfaces; 2016 Feb; 8(5):3268-76. PubMed ID: 26780919 [TBL] [Abstract][Full Text] [Related]
3. High Thermoelectric Performance of In Yin X; Liu JY; Chen L; Wu LM Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668 [TBL] [Abstract][Full Text] [Related]
4. Sb- and Bi-doped Mg2Si: location of the dopants, micro- and nanostructures, electronic structures and thermoelectric properties. Farahi N; VanZant M; Zhao J; Tse JS; Prabhudev S; Botton GA; Salvador JR; Borondics F; Liu Z; Kleinke H Dalton Trans; 2014 Oct; 43(40):14983-91. PubMed ID: 25005794 [TBL] [Abstract][Full Text] [Related]
5. Effects of Sb Deviation from Its Stoichiometric Ratio on the Micro- and Electronic Structures and Thermoelectric Properties of Cu Huang L; Kong Y; Zhang J; Zhu C; Zhang J; Li Y; Li D; Xin H; Wang Z; Qin X ACS Appl Mater Interfaces; 2020 Mar; 12(12):14145-14153. PubMed ID: 32109043 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the Thermoelectric Performance of Mg Saito W; Hayashi K; Huang Z; Dong J; Li JF; Miyazaki Y ACS Appl Mater Interfaces; 2020 Dec; 12(52):57888-57897. PubMed ID: 33320522 [TBL] [Abstract][Full Text] [Related]
7. Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity. Saparamadu U; Li C; He R; Zhu H; Ren Z; Mao J; Song S; Sun J; Chen S; Zhang Q; Nielsch K; Broido D; Ren Z ACS Appl Mater Interfaces; 2019 Jan; 11(1):511-516. PubMed ID: 30525424 [TBL] [Abstract][Full Text] [Related]
8. Vacancy-Based Defect Regulation for High Thermoelectric Performance in Ge Chen S; Bai H; Li J; Pan W; Jiang X; Li Z; Chen Z; Yan Y; Su X; Wu J; Uher C; Tang X ACS Appl Mater Interfaces; 2020 Apr; 12(17):19664-19673. PubMed ID: 32255612 [TBL] [Abstract][Full Text] [Related]
9. Stabilizing the Optimal Carrier Concentration in Al/Sb-Codoped GeTe for High Thermoelectric Performance. Wang X; Xue W; Zhang Z; Li X; Yin L; Chen C; Yu B; Sui J; Cao F; Liu X; Mao J; Wang Y; Lin X; Zhang Q ACS Appl Mater Interfaces; 2021 Sep; 13(38):45717-45725. PubMed ID: 34541842 [TBL] [Abstract][Full Text] [Related]
10. Thermoelectric properties of Yb(x)Eu(1-x)Cd2Sb2. Zhang H; Fang L; Tang MB; Man ZY; Chen HH; Yang XX; Baitinger M; Grin Y; Zhao JT J Chem Phys; 2010 Nov; 133(19):194701. PubMed ID: 21090867 [TBL] [Abstract][Full Text] [Related]
13. Tuning the carrier concentration using Zintl chemistry in Mg3Sb2, and its implications for thermoelectric figure-of-merit. Bhardwaj A; Chauhan NS; Goel S; Singh V; Pulikkotil JJ; Senguttuvan TD; Misra DK Phys Chem Chem Phys; 2016 Feb; 18(8):6191-200. PubMed ID: 26852729 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Thermoelectric Properties of Codoped Cr Zhang T; Su X; Yan Y; Liu W; Hu T; Zhang C; Zhang Z; Tang X ACS Appl Mater Interfaces; 2018 Jul; 10(26):22389-22400. PubMed ID: 29905069 [TBL] [Abstract][Full Text] [Related]
15. Synergetic effect of Zn substitution on the electron and phonon transport in Mg2Si0.5Sn0.5-based thermoelectric materials. Gao H; Zhu T; Zhao X; Deng Y Dalton Trans; 2014 Oct; 43(37):14072-8. PubMed ID: 25118956 [TBL] [Abstract][Full Text] [Related]
16. Thermoelectric Properties of Bi-Doped Magnesium Silicide Stannides. Macario LR; Cheng X; Ramirez D; Mori T; Kleinke H ACS Appl Mater Interfaces; 2018 Nov; 10(47):40585-40591. PubMed ID: 30387592 [TBL] [Abstract][Full Text] [Related]
17. Thermal Transport Driven by Extraneous Nanoparticles and Phase Segregation in Nanostructured Mg2(Si,Sn) and Estimation of Optimum Thermoelectric Performance. Tazebay AS; Yi SI; Lee JK; Kim H; Bahk JH; Kim SL; Park SD; Lee HS; Shakouri A; Yu C ACS Appl Mater Interfaces; 2016 Mar; 8(11):7003-12. PubMed ID: 26915474 [TBL] [Abstract][Full Text] [Related]
18. Enhanced thermoelectric performance of rough silicon nanowires. Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582 [TBL] [Abstract][Full Text] [Related]
19. Light Element Doping and Introducing Spin Entropy: An Effective Strategy for Enhancement of Thermoelectric Properties in BiCuSeO. Tang J; Xu R; Zhang J; Li D; Zhou W; Li X; Wang Z; Xu F; Tang G; Chen G ACS Appl Mater Interfaces; 2019 May; 11(17):15543-15551. PubMed ID: 30964989 [TBL] [Abstract][Full Text] [Related]
20. Large-area 2D bismuth antimonide with enhanced thermoelectric properties Zhao H; Xue Y; Zhao Y; Chen J; Chang B; Huang H; Xu T; Sun L; Chen Y; Sha J; Zhu B; Tao L Mater Horiz; 2023 Jun; 10(6):2053-2061. PubMed ID: 36930046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]