These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30294886)

  • 21. Pressure-Driven Perfusion System to Control, Multiplex and Recirculate Cell Culture Medium for Organs-on-Chips.
    de Graaf MNS; Vivas A; van der Meer AD; Mummery CL; Orlova VV
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.
    Chen Y; Chan HN; Michael SA; Shen Y; Chen Y; Tian Q; Huang L; Wu H
    Lab Chip; 2017 Feb; 17(4):653-662. PubMed ID: 28112765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidics: A high-throughput system for the assessment of the endotheliopathy of trauma and the effect of timing of plasma administration on ameliorating shock-associated endothelial dysfunction.
    Diebel LN; Martin JV; Liberati DM
    J Trauma Acute Care Surg; 2018 Apr; 84(4):575-582. PubMed ID: 29287059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pumpless microfluidic devices for generating healthy and diseased endothelia.
    Yang Y; Fathi P; Holland G; Pan D; Wang NS; Esch MB
    Lab Chip; 2019 Sep; 19(19):3212-3219. PubMed ID: 31455960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perfusion culture of endothelial cells under shear stress on microporous membrane in a pressure-driven microphysiological system.
    Sugiura S; Shin K; Kanamori T
    J Biosci Bioeng; 2023 Jan; 135(1):79-85. PubMed ID: 36253250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro recapitulation of functional microvessels for the study of endothelial shear response, nitric oxide and [Ca2+]i.
    Li X; Xu S; He P; Liu Y
    PLoS One; 2015; 10(5):e0126797. PubMed ID: 25965067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A dual-functional microfluidic chip for on-line detection of interleukin-8 based on rolling circle amplification.
    Zhang W; He Z; Yi L; Mao S; Li H; Lin JM
    Biosens Bioelectron; 2018 Apr; 102():652-660. PubMed ID: 29268188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A microfluidic system for precisely reproducing physiological blood pressure and wall shear stress to endothelial cells.
    Na JT; Hu SY; Xue CD; Wang YX; Chen KJ; Li YJ; Wang Y; Qin KR
    Analyst; 2021 Sep; 146(19):5913-5922. PubMed ID: 34570848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On-Chip Label-Free Sorting of Living and Dead Cells.
    Wang G; Li C; Miao C; Li S; Qiu B; Ding W
    ACS Biomater Sci Eng; 2023 Sep; 9(9):5430-5440. PubMed ID: 37603885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiphase flow experiment and simulation for cells-on-a-chip devices.
    Zhang M; Zheng A; Zheng ZC; Wang MZ
    Proc Inst Mech Eng H; 2019 Apr; 233(4):432-443. PubMed ID: 30929613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microvasculature on a chip: study of the Endothelial Surface Layer and the flow structure of Red Blood Cells.
    Tsvirkun D; Grichine A; Duperray A; Misbah C; Bureau L
    Sci Rep; 2017 Mar; 7():45036. PubMed ID: 28338083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new microfluidic model that allows monitoring of complex vascular structures and cell interactions in a 3D biological matrix.
    van Dijk CGM; Brandt MM; Poulis N; Anten J; van der Moolen M; Kramer L; Homburg EFGA; Louzao-Martinez L; Pei J; Krebber MM; van Balkom BWM; de Graaf P; Duncker DJ; Verhaar MC; Luttge R; Cheng C
    Lab Chip; 2020 May; 20(10):1827-1844. PubMed ID: 32330215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.
    Ryu H; Oh S; Lee HJ; Lee JY; Lee HK; Jeon NL
    J Lab Autom; 2015 Jun; 20(3):296-301. PubMed ID: 25532526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic organ-on-chip technology for blood-brain barrier research.
    van der Helm MW; van der Meer AD; Eijkel JC; van den Berg A; Segerink LI
    Tissue Barriers; 2016; 4(1):e1142493. PubMed ID: 27141422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A microfluidic platform integrating dynamic cell culture and dielectrophoretic manipulation for
    Yang H; Chen T; Hu Y; Niu F; Zheng X; Sun H; Cheng L; Sun L
    Lab Chip; 2023 Aug; 23(16):3581-3592. PubMed ID: 37417786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organ-on-a-chip technology and microfluidic whole-body models for pharmacokinetic drug toxicity screening.
    Lee JB; Sung JH
    Biotechnol J; 2013 Nov; 8(11):1258-66. PubMed ID: 24038956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system.
    Choi J; Kim S; Jung J; Lim Y; Kang K; Park S; Kang S
    Biomaterials; 2011 Oct; 32(29):7013-22. PubMed ID: 21705075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple Spinning of Heterogeneous Hollow Microfibers on Chip.
    Yu Y; Wei W; Wang Y; Xu C; Guo Y; Qin J
    Adv Mater; 2016 Aug; 28(31):6649-55. PubMed ID: 27185309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.