These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30294886)

  • 41. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.
    Yu JQ; Liu XF; Chin LK; Liu AQ; Luo KQ
    Lab Chip; 2013 Jul; 13(14):2693-700. PubMed ID: 23620256
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Screening of angiogenesis inhibitors using a 3D vascular microfluidic chip to achieve contraception.
    Si Q; Liu R
    Biochem Biophys Res Commun; 2019 Jul; 515(1):92-98. PubMed ID: 31128919
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photonic crystal beads from gravity-driven microfluidics.
    Gu H; Rong F; Tang B; Zhao Y; Fu D; Gu Z
    Langmuir; 2013 Jun; 29(25):7576-82. PubMed ID: 23718690
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A steroid-induced osteonecrosis model established using an organ-on-a-chip platform.
    Li T; Liu Y; Zhang Q; Sun W; Dong Y
    Exp Ther Med; 2021 Oct; 22(4):1070. PubMed ID: 34447463
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Long-term maintenance of a microfluidic 3D human liver sinusoid.
    Prodanov L; Jindal R; Bale SS; Hegde M; McCarty WJ; Golberg I; Bhushan A; Yarmush ML; Usta OB
    Biotechnol Bioeng; 2016 Jan; 113(1):241-6. PubMed ID: 26152452
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic perfusion culture.
    Hattori K; Sugiura S; Kanamori T
    Methods Mol Biol; 2014; 1104():251-63. PubMed ID: 24297421
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.
    Frey O; Misun PM; Fluri DA; Hengstler JG; Hierlemann A
    Nat Commun; 2014 Jun; 5():4250. PubMed ID: 24977495
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A pneumatic pressure-driven multi-throughput microfluidic circulation culture system.
    Satoh T; Narazaki G; Sugita R; Kobayashi H; Sugiura S; Kanamori T
    Lab Chip; 2016 Jun; 16(12):2339-48. PubMed ID: 27229626
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic chip for the detection of biological toxic effects of polychlorinated biphenyls on neuronal cells.
    Park S; Choi JW; Kim YK
    J Biomed Nanotechnol; 2013 May; 9(5):880-5. PubMed ID: 23802419
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gravitational sedimentation-based approach for ultra-simple and flexible cell patterning coculture on microfluidic device.
    Fan L; Luo T; Guan Z; Chow YT; Chen S; Wei T; Shakoor A; Lam RHW; Sun D
    Biofabrication; 2020 Apr; 12(3):035005. PubMed ID: 32182591
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip.
    Sung JH; Kam C; Shuler ML
    Lab Chip; 2010 Feb; 10(4):446-55. PubMed ID: 20126684
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Organ/body-on-a-chip based on microfluidic technology for drug discovery.
    Kimura H; Sakai Y; Fujii T
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system.
    Palková Z; Váchová L; Valer M; Preckel T
    Cytometry A; 2004 Jun; 59(2):246-53. PubMed ID: 15170604
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic assay of circulating endothelial cells in coronary artery disease patients with angina pectoris.
    Chen S; Sun Y; Neoh KH; Chen A; Li W; Yang X; Han RPS
    PLoS One; 2017; 12(7):e0181249. PubMed ID: 28704506
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells.
    Ong LJY; Chong LH; Jin L; Singh PK; Lee PS; Yu H; Ananthanarayanan A; Leo HL; Toh YC
    Biotechnol Bioeng; 2017 Oct; 114(10):2360-2370. PubMed ID: 28542705
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system.
    Ohtani-Kaneko R; Sato K; Tsutiya A; Nakagawa Y; Hashizume K; Tazawa H
    Biomed Microdevices; 2017 Oct; 19(4):91. PubMed ID: 28994005
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bio-functionalized silk hydrogel microfluidic systems.
    Zhao S; Chen Y; Partlow BP; Golding AS; Tseng P; Coburn J; Applegate MB; Moreau JE; Omenetto FG; Kaplan DL
    Biomaterials; 2016 Jul; 93():60-70. PubMed ID: 27077566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.