BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 30295460)

  • 1. High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics.
    Zhang L; Viola W; Andrew TL
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36834-36840. PubMed ID: 30295460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.
    Andrew TL; Zhang L; Cheng N; Baima M; Kim JJ; Allison L; Hoxie S
    Acc Chem Res; 2018 Apr; 51(4):850-859. PubMed ID: 29521501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Flexible All-Organic Conductors for Multifunctional Wearable Applications.
    Moon IK; Yoon S; Lee HU; Kim SW; Oh J
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40580-40592. PubMed ID: 29067808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable Coplanar Self-Charging Power Textile with Resist-Dyeing Triboelectric Nanogenerators and Microsupercapacitors.
    Cong Z; Guo W; Guo Z; Chen Y; Liu M; Hou T; Pu X; Hu W; Wang ZL
    ACS Nano; 2020 May; 14(5):5590-5599. PubMed ID: 32369343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO
    Wang J; Dong L; Xu C; Ren D; Ma X; Kang F
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10851-10859. PubMed ID: 29528208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage.
    Chai Z; Zhang N; Sun P; Huang Y; Zhao C; Fan HJ; Fan X; Mai W
    ACS Nano; 2016 Oct; 10(10):9201-9207. PubMed ID: 27701868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All Two-Dimensional Pseudocapacitive Sheet Materials for Flexible Asymmetric Solid-State Planar Microsupercapacitors with High Energy Density.
    Zhao F; Liu W; Qiu T; Gong WB; Ma W; Li Q; Li F; Geng F
    ACS Nano; 2020 Jan; 14(1):603-610. PubMed ID: 31829620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidimensional Hierarchical Fabric-Based Supercapacitor with Bionic Fiber Microarrays for Smart Wearable Electronic Textiles.
    Li Z; Ma Y; Wang L; Du X; Zhu S; Zhang X; Qu L; Tian M
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46278-46285. PubMed ID: 31713408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming Commercial Textiles and Threads into Sewable and Weavable Electric Heaters.
    Zhang L; Baima M; Andrew TL
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32299-32307. PubMed ID: 28853279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors.
    Choi C; Kim SH; Sim HJ; Lee JA; Choi AY; Kim YT; Lepró X; Spinks GM; Baughman RH; Kim SJ
    Sci Rep; 2015 Mar; 5():9387. PubMed ID: 25797351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite.
    Pu J; Wang X; Zhang T; Li S; Liu J; Komvopoulos K
    Nanotechnology; 2016 Jan; 27(4):045701. PubMed ID: 26670532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the Mechanical and Electrical Properties of Porous Electrodes for Architecting 3D Microsupercapacitors with Batteries-Level Energy.
    Li C; Li X; Yang Q; Sun P; Wu L; Nie B; Tian H; Wang Y; Wang C; Chen X; Shao J
    Adv Sci (Weinh); 2021 Aug; 8(15):e2004957. PubMed ID: 34151539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Microsupercapacitors Using Silk and Cotton Substrates.
    Das C; Krishnamoorthy K
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29504-29510. PubMed ID: 27714996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Interdigital Au/MnO2 /Au Stacked Hybrid Electrodes for On-Chip Microsupercapacitors.
    Hu H; Pei Z; Fan H; Ye C
    Small; 2016 Jun; 12(22):3059-69. PubMed ID: 27116677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density.
    Cai W; Lai T; Lai J; Xie H; Ouyang L; Ye J; Yu C
    Sci Rep; 2016 Jun; 6():26890. PubMed ID: 27248510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastretchable MXene Microsupercapacitors.
    Wang M; Feng S; Bai C; Ji K; Zhang J; Wang S; Lu Y; Kong D
    Small; 2023 May; 19(21):e2300386. PubMed ID: 36823446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Microcavity Array Electrodes for High-Capacitance All-Solid-State Flexible Microsupercapacitors.
    Maeng J; Kim YJ; Meng C; Irazoqui PP
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13458-65. PubMed ID: 27176134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable Production of 2D Material Heterostructure Textiles for High-Performance Wearable Supercapacitors.
    Islam MR; Afroj S; Karim N
    ACS Nano; 2023 Sep; 17(18):18481-18493. PubMed ID: 37695696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing.
    Lee KH; Lee SS; Ahn DB; Lee J; Byun D; Lee SY
    Sci Adv; 2020 Mar; 6(10):eaaz1692. PubMed ID: 32181360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors.
    Li Z; Huang T; Gao W; Xu Z; Chang D; Zhang C; Gao C
    ACS Nano; 2017 Nov; 11(11):11056-11065. PubMed ID: 29035519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.