BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 30295467)

  • 1. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433.
    Monro S; Colón KL; Yin H; Roque J; Konda P; Gujar S; Thummel RP; Lilge L; Cameron CG; McFarland SA
    Chem Rev; 2019 Jan; 119(2):797-828. PubMed ID: 30295467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the mechanisms of action and subcellular localization of ruthenium(II)-based photosensitizers.
    Mo J; Mai Le NP; Priefer R
    Eur J Med Chem; 2021 Dec; 225():113770. PubMed ID: 34403979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical Overview of the Use of Ru(II) Polypyridyl Complexes as Photosensitizers in One-Photon and Two-Photon Photodynamic Therapy.
    Heinemann F; Karges J; Gasser G
    Acc Chem Res; 2017 Nov; 50(11):2727-2736. PubMed ID: 29058879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application.
    Zhao X; Liu J; Fan J; Chao H; Peng X
    Chem Soc Rev; 2021 Mar; 50(6):4185-4219. PubMed ID: 33527104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Tris-Heteroleptic Ru(II) Complex with Red-Light Excitation and Remarkably Improved Photobiological Activity.
    Li S; Zhao J; Wang X; Xu G; Gou S; Zhao Q
    Inorg Chem; 2020 Aug; 59(15):11193-11204. PubMed ID: 32702972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. π-Expansive Heteroleptic Ruthenium(II) Complexes as Reverse Saturable Absorbers and Photosensitizers for Photodynamic Therapy.
    Wang L; Yin H; Jabed MA; Hetu M; Wang C; Monro S; Zhu X; Kilina S; McFarland SA; Sun W
    Inorg Chem; 2017 Mar; 56(6):3245-3259. PubMed ID: 28263079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium(II) polypyridyl complexes as emerging photosensitisers for antibacterial photodynamic therapy.
    Ng XY; Fong KW; Kiew LV; Chung PY; Liew YK; Delsuc N; Zulkefeli M; Low ML
    J Inorg Biochem; 2024 Jan; 250():112425. PubMed ID: 37977020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile Strategy To Generate a Rhodamine Triplet State as Mitochondria-Targeting Visible-Light Photosensitizers for Efficient Photodynamic Therapy.
    Liu C; Zhou L; Wei F; Li L; Zhao S; Gong P; Cai L; Wong KM
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8797-8806. PubMed ID: 30730131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymeric Encapsulation of a Ruthenium Polypyridine Complex for Tumor Targeted One- and Two-Photon Photodynamic Therapy.
    Karges J; Li J; Zeng L; Chao H; Gasser G
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54433-54444. PubMed ID: 33238711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruthenium-Based Photoactivated Chemotherapy.
    Bonnet S
    J Am Chem Soc; 2023 Nov; 145(43):23397-23415. PubMed ID: 37846939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study on photophysical properties of three high water solubility polypyridyl complexes for two-photon photodynamic therapy.
    Liu YT; Yin X; Lai XY; Wang X
    Phys Chem Chem Phys; 2018 Jul; 20(26):18074-18081. PubMed ID: 29932200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of intracellular oxygen and cell metabolism by simultaneous PLIM of phosphorescent TLD1433 and FLIM of NAD(P)H.
    Kalinina S; Breymayer J; Reeß K; Lilge L; Mandel A; Rück A
    J Biophotonics; 2018 Oct; 11(10):e201800085. PubMed ID: 29877627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Panchromatic Osmium Complexes for Photodynamic Therapy: Solutions to Existing Problems and New Questions.
    Glazer EC
    Photochem Photobiol; 2017 Oct; 93(5):1326-1328. PubMed ID: 28543667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosensitizers for Photodynamic Therapy.
    Lan M; Zhao S; Liu W; Lee CS; Zhang W; Wang P
    Adv Healthc Mater; 2019 Jul; 8(13):e1900132. PubMed ID: 31067008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of action of Ru(ii) polypyridyl complexes in living cells upon light irradiation.
    Jakubaszek M; Goud B; Ferrari S; Gasser G
    Chem Commun (Camb); 2018 Nov; 54(93):13040-13059. PubMed ID: 30398487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in the Design of Targeted Iridium(III) Photosensitizers for Photodynamic Therapy.
    Huang H; Banerjee S; Sadler PJ
    Chembiochem; 2018 Aug; 19(15):1574-1589. PubMed ID: 30019476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive Strength of Photophysical Measurements for in Vitro Photobiological Activity in a Series of Ru(II) Polypyridyl Complexes Derived from π-Extended Ligands.
    Reichardt C; Monro S; Sobotta FH; Colón KL; Sainuddin T; Stephenson M; Sampson E; Roque J; Yin H; Brendel JC; Cameron CG; McFarland S; Dietzek B
    Inorg Chem; 2019 Mar; 58(5):3156-3166. PubMed ID: 30763081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photobiomodulation combined with photodynamic therapy using ruthenium phthalocyanine complexes in A375 melanoma cells: Effects of nitric oxide generation and ATP production.
    Negri LB; Martins TJ; da Silva RS; Hamblin MR
    J Photochem Photobiol B; 2019 Sep; 198():111564. PubMed ID: 31382090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. More-Is-Better Strategy for Constructing Homoligand Polypyridyl Ruthenium Complexes as Photosensitizers for Infrared Two-Photon Photodynamic Therapy.
    Tang SJ; Wang MF; Yang R; Liu M; Li QF; Gao F
    Inorg Chem; 2023 May; 62(21):8210-8218. PubMed ID: 37194614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers.
    Teeuwen PCP; Melissari Z; Senge MO; Williams RM
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.