These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30295670)

  • 21. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging.
    Surry KJ; Austin HJ; Fenster A; Peters TM
    Phys Med Biol; 2004 Dec; 49(24):5529-46. PubMed ID: 15724540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and Characterization of Medical Phantoms for Ultrasound Imaging Based on Customizable and Mouldable Polyvinyl Alcohol Cryogel-Based Materials and 3-D Printing: Application to High-Frequency Cranial Ultrasonography in Infants.
    Elvira L; Durán C; Higuti RT; Tiago MM; Ibáñez A; Parrilla M; Valverde E; Jiménez J; Bassat Q
    Ultrasound Med Biol; 2019 Aug; 45(8):2226-2241. PubMed ID: 31128769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calculation of strain images of a breast-mimicking phantom from 3D CT image data.
    Kim JG; Aowlad Hossain AB; Shin JH; Lee SY
    Med Phys; 2012 Sep; 39(9):5469-78. PubMed ID: 22957614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a vessel-mimicking material for use in anatomically realistic Doppler flow phantoms.
    King DM; Moran CM; McNamara JD; Fagan AJ; Browne JE
    Ultrasound Med Biol; 2011 May; 37(5):813-26. PubMed ID: 21497719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity.
    Chu KC; Rutt BK
    Magn Reson Med; 1997 Feb; 37(2):314-9. PubMed ID: 9001158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A quantitative comparison of modulus images obtained using nanoindentation with strain elastograms.
    Srinivasan S; Krouskop T; Ophir J
    Ultrasound Med Biol; 2004 Jul; 30(7):899-918. PubMed ID: 15313323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards clinical prostate ultrasound elastography using full inversion approach.
    Mousavi SR; Sadeghi-Naini A; Czarnota GJ; Samani A
    Med Phys; 2014 Mar; 41(3):033501. PubMed ID: 24593743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patient Specific Wall Stress Analysis and Mechanical Characterization of Abdominal Aortic Aneurysms Using 4D Ultrasound.
    van Disseldorp EM; Petterson NJ; Rutten MC; van de Vosse FN; van Sambeek MR; Lopata RG
    Eur J Vasc Endovasc Surg; 2016 Nov; 52(5):635-642. PubMed ID: 27665991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PVA matches human liver in needle-tissue interaction.
    de Jong TL; Pluymen LH; van Gerwen DJ; Kleinrensink GJ; Dankelman J; van den Dobbelsteen JJ
    J Mech Behav Biomed Mater; 2017 May; 69():223-228. PubMed ID: 28103514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel fast full inversion based breast ultrasound elastography technique.
    Karimi H; Fenster A; Samani A
    Phys Med Biol; 2013 Apr; 58(7):2219-33. PubMed ID: 23475227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.
    Bihari P; Shelke A; Nwe TH; Mularczyk M; Nelson K; Schmandra T; Knez P; Schmitz-Rixen T
    Eur J Vasc Endovasc Surg; 2013 Apr; 45(4):315-23. PubMed ID: 23403222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk.
    Tierney ÁP; Callanan A; McGloughlin TM
    J Endovasc Ther; 2012 Feb; 19(1):100-14. PubMed ID: 22313210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A constrained reconstruction technique of hyperelasticity parameters for breast cancer assessment.
    Mehrabian H; Campbell G; Samani A
    Phys Med Biol; 2010 Dec; 55(24):7489-508. PubMed ID: 21098922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the influence of wall calcification and intraluminal thrombus on prediction of abdominal aortic aneurysm rupture.
    Barrett HE; Cunnane EM; Hidayat H; O'Brien JM; Moloney MA; Kavanagh EG; Walsh MT
    J Vasc Surg; 2018 Apr; 67(4):1234-1246.e2. PubMed ID: 28899569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue-mimicking oil-in-gelatin dispersions for use in heterogeneous elastography phantoms.
    Madsen EL; Frank GR; Krouskop TA; Varghese T; Kallel F; Ophir J
    Ultrason Imaging; 2003 Jan; 25(1):17-38. PubMed ID: 12747425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fractal network dimension and viscoelastic powerlaw behavior: II. An experimental study of structure-mimicking phantoms by magnetic resonance elastography.
    Guo J; Posnansky O; Hirsch S; Scheel M; Taupitz M; Braun J; Sack I
    Phys Med Biol; 2012 Jun; 57(12):4041-53. PubMed ID: 22674199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predictive Model for Designing Soft-Tissue Mimicking Ultrasound Phantoms With Adjustable Elasticity.
    Dahmani J; Laporte C; Pereira D; Belanger P; Petit Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):715-726. PubMed ID: 31725375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Viscoelastic parameter estimation based on spectral analysis.
    Eskandari H; Salcudean SE; Rohling R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1611-25. PubMed ID: 18986951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.