BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30295991)

  • 1. In Vivo Synthesis of Nanocomposites Using the Recombinant Escherichia coli.
    Jung JH; Lee SY; Seo TS
    Small; 2018 Oct; 14(42):e1803133. PubMed ID: 30295991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically Active AuNR@Ag Core-Shell Nanoparticles and Hierarchical Assembly via DNA-Mediated Surface Chemistry.
    Lan X; Wang Q
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34598-34602. PubMed ID: 27936559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible light driven mesoporous Ag-embedded ZnO nanocomposites: reactive oxygen species enhanced photocatalysis, bacterial inhibition and photodynamic therapy.
    Gupta J; Mohapatra J; Bahadur D
    Dalton Trans; 2017 Jan; 46(3):685-696. PubMed ID: 27896346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Halloysite nanotubes with immobilized silver nanoparticles for anti-bacterial application.
    Jana S; Kondakova AV; Shevchenko SN; Sheval EV; Gonchar KA; Timoshenko VY; Vasiliev AN
    Colloids Surf B Biointerfaces; 2017 Mar; 151():249-254. PubMed ID: 28024201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration.
    Banerjee M; Sharma S; Chattopadhyay A; Ghosh SS
    Nanoscale; 2011 Dec; 3(12):5120-5. PubMed ID: 22057130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of core-shell Au Fe oxide nanocomposites and their application for detecting immunological interaction.
    Ahmadi A; Shirazi H; Pourbagher N; Omidfar K
    Monoclon Antib Immunodiagn Immunother; 2014 Apr; 33(2):74-9. PubMed ID: 24746147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence turn-on sensing of L-cysteine based on FRET between Au-Ag nanoclusters and Au nanorods.
    Li JJ; Qiao D; Zhao J; Weng GJ; Zhu J; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():247-255. PubMed ID: 30947133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and application of novel nanocomposites of magnetic-Au nanorod in SPR biosensor.
    Zhang H; Sun Y; Wang J; Zhang J; Zhang H; Zhou H; Song D
    Biosens Bioelectron; 2012 Apr; 34(1):137-43. PubMed ID: 22386487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide supported Au-Ag alloy nanoparticles with different shapes and their high catalytic activities.
    Wu T; Ma J; Wang X; Liu Y; Xu H; Gao J; Wang W; Liu Y; Yan J
    Nanotechnology; 2013 Mar; 24(12):125301. PubMed ID: 23459126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles' antibacterial properties.
    Chen MN; Chan CF; Huang SL; Lin YS
    J Sci Food Agric; 2019 May; 99(7):3693-3702. PubMed ID: 30663065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive immunoassay of von Willebrand factor based on fluorescence resonance energy transfer between graphene quantum dots and Ag@Au nanoparticles.
    Kong L; Li Y; Ma C; Liu B; Tan L
    Colloids Surf B Biointerfaces; 2018 May; 165():286-292. PubMed ID: 29501023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of photothermal nanocomposites and their application to antibacterial assays.
    Yang N; Wang C; Wang X; Li L
    Nanotechnology; 2018 Apr; 29(17):175601. PubMed ID: 29451132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process.
    Upadhyay J; Kumar A; Gogoi B; Buragohain AK
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():8-13. PubMed ID: 26046261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity.
    Ghosh S; Saraswathi A; Indi SS; Hoti SL; Vasan HN
    Langmuir; 2012 Jun; 28(22):8550-61. PubMed ID: 22582868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf.
    Paul B; Bhuyan B; Purkayastha DD; Dhar SS
    J Photochem Photobiol B; 2016 Jan; 154():1-7. PubMed ID: 26590801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monodisperse Rattle-Structured Gold Nanorod-Mesoporous Silica Nanoparticles Core-Shell as Sulforaphane Carrier and its Sustained-Release Property.
    Manjili HK; Ma'mani L; Naderi-Manesh H
    Drug Res (Stuttg); 2018 Sep; 68(9):504-513. PubMed ID: 29660748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications.
    Luo Z; Zheng K; Xie J
    Chem Commun (Camb); 2014 May; 50(40):5143-55. PubMed ID: 24266029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity.
    Wang H; Liu J; Wu X; Tong Z; Deng Z
    Nanotechnology; 2013 May; 24(20):205102. PubMed ID: 23609179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shaping gold nanocomposites with tunable optical properties.
    Martins MA; Fateixa S; Girão AV; Pereira SS; Trindade T
    Langmuir; 2010 Jul; 26(13):11407-12. PubMed ID: 20415508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.