These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 30296247)

  • 21. Sequential patterns mining and gene sequence visualization to discover novelty from microarray data.
    Sallaberry A; Pecheur N; Bringay S; Roche M; Teisseire M
    J Biomed Inform; 2011 Oct; 44(5):760-74. PubMed ID: 21527357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovering fuzzy time-interval sequential patterns in sequence databases.
    Chen YL; Huang TC
    IEEE Trans Syst Man Cybern B Cybern; 2005 Oct; 35(5):959-72. PubMed ID: 16240771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TSARM-UDP: An Efficient Time Series Association Rules Mining Algorithm Based on Up-to-Date Patterns.
    Zhao Q; Li Q; Yu D; Han Y
    Entropy (Basel); 2021 Mar; 23(3):. PubMed ID: 33808525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An efficient approach to mining maximal contiguous frequent patterns from large DNA sequence databases.
    Karim MR; Rashid MM; Jeong BS; Choi HJ
    Genomics Inform; 2012 Mar; 10(1):51-7. PubMed ID: 23105929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frequent patterns mining in multiple biological sequences.
    Chen L; Liu W
    Comput Biol Med; 2013 Oct; 43(10):1444-52. PubMed ID: 24034736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mining Contiguous Sequential Generators in Biological Sequences.
    Zhang J; Wang Y; Zhang C; Shi Y
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):855-867. PubMed ID: 26529774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discovering metric temporal constraint networks on temporal databases.
    Álvarez MR; Félix P; Cariñena P
    Artif Intell Med; 2013 Jul; 58(3):139-54. PubMed ID: 23660232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PMBC: pattern mining from biological sequences with wildcard constraints.
    Wu X; Zhu X; He Y; Arslan AN
    Comput Biol Med; 2013 Jun; 43(5):481-92. PubMed ID: 23566394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TKFIM: Top-K frequent itemset mining technique based on equivalence classes.
    Iqbal S; Shahid A; Roman M; Khan Z; Al-Otaibi S; Yu L
    PeerJ Comput Sci; 2021; 7():e385. PubMed ID: 33817031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MACFP: Maximal Approximate Consecutive Frequent Pattern Mining under Edit Distance.
    Shang J; Peng J; Han J
    Proc SIAM Int Conf Data Min; 2016 May; 2016():558-566. PubMed ID: 28174677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of sequential pattern mining to predict next prescribed medications.
    Wright AP; Wright AT; McCoy AB; Sittig DF
    J Biomed Inform; 2015 Feb; 53():73-80. PubMed ID: 25236952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PVTree: A Sequential Pattern Mining Method for Alignment Independent Phylogeny Reconstruction.
    Kang Y; Yang X; Lin J; Ye K
    Genes (Basel); 2019 Jan; 10(2):. PubMed ID: 30678245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Status Set Sequential Pattern Mining Considering Time Windows and Periodic Analysis of Patterns.
    Zhou S; Liu H; Chen B; Hou W; Ji X; Zhang Y; Chang W; Xiao Y
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34208012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An efficient, versatile and scalable pattern growth approach to mine frequent patterns in unaligned protein sequences.
    Ye K; Kosters WA; Ijzerman AP
    Bioinformatics; 2007 Mar; 23(6):687-93. PubMed ID: 17237070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A framework for mining actionable navigation patterns from in-store RFID datasets via indoor mapping.
    Shen B; Zheng Q; Li X; Xu L
    Sensors (Basel); 2015 Mar; 15(3):5344-75. PubMed ID: 25751076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MAIL: mining sequential patterns with wildcards.
    Xie F; Wu X; Hu X; Gao J; Guo D; Fei Y; Hua E
    Int J Data Min Bioinform; 2013; 8(1):1-23. PubMed ID: 23865162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic association rules for gene expression data analysis.
    Chen SC; Tsai TH; Chung CH; Li WH
    BMC Genomics; 2015 Oct; 16():786. PubMed ID: 26467206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mining Sequential Risk Patterns From Large-Scale Clinical Databases for Early Assessment of Chronic Diseases: A Case Study on Chronic Obstructive Pulmonary Disease.
    Cheng YT; Lin YF; Chiang KH; Tseng VS
    IEEE J Biomed Health Inform; 2017 Mar; 21(2):303-311. PubMed ID: 28129195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Mining Template of Predictive Temporal Clinical Event Patterns From Patient Electronic Medical Records.
    Li J; Tan X; Xu X; Wang F
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):2138-2147. PubMed ID: 30346297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Apriori Versions Based on MapReduce for Mining Frequent Patterns on Big Data.
    Maria Luna J; Padillo F; Pechenizkiy M; Ventura S
    IEEE Trans Cybern; 2018 Oct; 48(10):2851-2865. PubMed ID: 28961134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.