These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
467 related articles for article (PubMed ID: 30296386)
1. Projected changes in particulate matter concentrations in the South Coast Air Basin due to basin-wide reductions in nitrogen oxides, volatile organic compounds, and ammonia emissions. Stewart DR; Saunders E; Perea R; Fitzgerald R; Campbell DE; Stockwell WR J Air Waste Manag Assoc; 2019 Feb; 69(2):192-208. PubMed ID: 30296386 [TBL] [Abstract][Full Text] [Related]
2. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions. Fujita EM; Campbell DE; Stockwell WR; Saunders E; Fitzgerald R; Perea R J Air Waste Manag Assoc; 2016 Feb; 66(2):201-14. PubMed ID: 26514212 [TBL] [Abstract][Full Text] [Related]
3. Past and future ozone trends in California's South Coast Air Basin: reconciliation of ambient measurements with past and projected emission inventories. Fujita EM; Campbell DE; Stockwell WR; Lawson DR J Air Waste Manag Assoc; 2013 Jan; 63(1):54-69. PubMed ID: 23447864 [TBL] [Abstract][Full Text] [Related]
4. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861 [TBL] [Abstract][Full Text] [Related]
5. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China. Wang N; Lyu XP; Deng XJ; Guo H; Deng T; Li Y; Yin CQ; Li F; Wang SQ Sci Total Environ; 2016 Dec; 573():1554-1565. PubMed ID: 27642074 [TBL] [Abstract][Full Text] [Related]
6. PM Wu Y; Gu B; Erisman JW; Reis S; Fang Y; Lu X; Zhang X Environ Pollut; 2016 Nov; 218():86-94. PubMed ID: 27552041 [TBL] [Abstract][Full Text] [Related]
7. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change. Campbell P; Zhang Y; Yan F; Lu Z; Streets D Environ Pollut; 2018 Jul; 238():918-930. PubMed ID: 29684896 [TBL] [Abstract][Full Text] [Related]
8. The London low emission zone baseline study. Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [TBL] [Abstract][Full Text] [Related]
9. Effect of current emission abatement strategies on air quality improvement in China: A case study of Baotou, a typical industrial city in Inner Mongolia. Qiu X; Duan L; Cai S; Yu Q; Wang S; Chai F; Gao J; Li Y; Xu Z J Environ Sci (China); 2017 Jul; 57():383-390. PubMed ID: 28647259 [TBL] [Abstract][Full Text] [Related]
10. Improvements in Air Quality and Health Outcomes Among California Medicaid Enrollees Due to Goods Movement Actions. Meng YY; Su JG; Chen X; Molitor J; Yue D; Jerrett M Res Rep Health Eff Inst; 2021 May; 2021(205):1-61. PubMed ID: 35869754 [TBL] [Abstract][Full Text] [Related]
11. A numerical study of reducing the concentration of O Chuang MT; Chou CC; Lin CY; Lee JH; Lin WC; Chen YY; Chang CC; Lee CT; Kong SS; Lin TH J Environ Manage; 2022 Sep; 318():115614. PubMed ID: 35779296 [TBL] [Abstract][Full Text] [Related]
12. Wintertime haze and ozone at Dinosaur National Monument. Prenni AJ; Benedict KB; Day DE; Sive BC; Zhou Y; Naimie L; Gebhart KA; Dombek T; De Boskey M; Hyslop NP; Spencer E; Chew QM; Collett JL; Schichtel BA J Air Waste Manag Assoc; 2022 Sep; 72(9):951-968. PubMed ID: 35254216 [TBL] [Abstract][Full Text] [Related]
13. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part I: Projected emissions, simulation design, and model evaluation. Campbell P; Zhang Y; Yan F; Lu Z; Streets D Environ Pollut; 2018 Jul; 238():903-917. PubMed ID: 29677550 [TBL] [Abstract][Full Text] [Related]
14. Day-of-week patterns of particulate matter and its chemical components at selected sites in California. Motallebi N; Tran H; Croes BE; Larsen LC J Air Waste Manag Assoc; 2003 Jul; 53(7):876-88. PubMed ID: 12880074 [TBL] [Abstract][Full Text] [Related]
15. Emissions, meteorological and climate impacts on PM Gao Z; Ivey CE; Blanchard CL; Do K; Lee SM; Russell AG Chemosphere; 2023 Jun; 325():138385. PubMed ID: 36921775 [TBL] [Abstract][Full Text] [Related]
16. Human-model hybrid Korean air quality forecasting system. Chang LS; Cho A; Park H; Nam K; Kim D; Hong JH; Song CK J Air Waste Manag Assoc; 2016 Sep; 66(9):896-911. PubMed ID: 27450767 [TBL] [Abstract][Full Text] [Related]
17. Modeling variability in air pollution-related health damages from individual airport emissions. Penn SL; Boone ST; Harvey BC; Heiger-Bernays W; Tripodis Y; Arunachalam S; Levy JI Environ Res; 2017 Jul; 156():791-800. PubMed ID: 28501677 [TBL] [Abstract][Full Text] [Related]
18. Analysis of PM de A Albuquerque TT; West J; de F Andrade M; Ynoue RY; AndreĆ£o WL; Dos Santos FS; Maciel FM; Pedruzzi R; de O Mateus V; Martins JA; Martins LD; Nascimento EGS; Moreira DM Environ Sci Pollut Res Int; 2019 Nov; 26(32):33216-33227. PubMed ID: 31520392 [TBL] [Abstract][Full Text] [Related]
19. Comprehensively assessing the drivers of future air quality in California. Zhu S; Horne JR; Mac Kinnon M; Samuelsen GS; Dabdub D Environ Int; 2019 Apr; 125():386-398. PubMed ID: 30743145 [TBL] [Abstract][Full Text] [Related]
20. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements. Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]