These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 30296569)
1. Association of single-nucleotide polymorphisms of the KEAP1 gene with the risk of various human diseases and its functional impact using in silico analysis. Dhamodharan U; Ponjayanthi B; Sireesh D; Bhakkiyalakshmi E; Ramkumar KM Pharmacol Res; 2018 Nov; 137():205-218. PubMed ID: 30296569 [TBL] [Abstract][Full Text] [Related]
2. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Cullinan SB; Gordan JD; Jin J; Harper JW; Diehl JA Mol Cell Biol; 2004 Oct; 24(19):8477-86. PubMed ID: 15367669 [TBL] [Abstract][Full Text] [Related]
3. Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer. Namani A; Matiur Rahaman M; Chen M; Tang X BMC Cancer; 2018 Jan; 18(1):46. PubMed ID: 29306329 [TBL] [Abstract][Full Text] [Related]
4. Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells. Iso T; Suzuki T; Baird L; Yamamoto M Mol Cell Biol; 2016 Dec; 36(24):3100-3112. PubMed ID: 27697860 [TBL] [Abstract][Full Text] [Related]
5. Role of human Keap1 S53 and S293 residues in modulating the binding of Keap1 to Nrf2. Wei S; Pei Y; Wang Y; Guan H; Huang Y; Xing T; Johnson RW; Wang D Biochimie; 2019 Mar; 158():73-81. PubMed ID: 30576774 [TBL] [Abstract][Full Text] [Related]
6. A Naturally-Occurring Dominant-Negative Inhibitor of Keap1 Competitively against Its Negative Regulation of Nrf2. Qiu L; Wang M; Zhu Y; Xiang Y; Zhang Y Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30042301 [TBL] [Abstract][Full Text] [Related]
7. CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1. Lo SC; Hannink M Mol Cell Biol; 2006 Feb; 26(4):1235-44. PubMed ID: 16449638 [TBL] [Abstract][Full Text] [Related]
8. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Sun Z; Zhang S; Chan JY; Zhang DD Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022 [TBL] [Abstract][Full Text] [Related]
9. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Kobayashi A; Kang MI; Watai Y; Tong KI; Shibata T; Uchida K; Yamamoto M Mol Cell Biol; 2006 Jan; 26(1):221-9. PubMed ID: 16354693 [TBL] [Abstract][Full Text] [Related]
10. Structural and biochemical characterization establishes a detailed understanding of KEAP1-CUL3 complex assembly. Adamson RJ; Payne NC; Bartual SG; Mazitschek R; Bullock AN Free Radic Biol Med; 2023 Aug; 204():215-225. PubMed ID: 37156295 [TBL] [Abstract][Full Text] [Related]
11. The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Uruno A; Motohashi H Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624 [TBL] [Abstract][Full Text] [Related]
12. The KEAP1-NRF2 System and Neurodegenerative Diseases. Uruno A; Yamamoto M Antioxid Redox Signal; 2023 May; 38(13-15):974-988. PubMed ID: 36930785 [No Abstract] [Full Text] [Related]
13. Simultaneous K-ras activation and Keap1 deletion cause atrophy of pancreatic parenchyma. Hamada S; Shimosegawa T; Taguchi K; Nabeshima T; Yamamoto M; Masamune A Am J Physiol Gastrointest Liver Physiol; 2018 Jan; 314(1):G65-G74. PubMed ID: 28971839 [TBL] [Abstract][Full Text] [Related]
14. Withaferin A induces heme oxygenase (HO-1) expression in endothelial cells via activation of the Keap1/Nrf2 pathway. Heyninck K; Sabbe L; Chirumamilla CS; Szarc Vel Szic K; Vander Veken P; Lemmens KJA; Lahtela-Kakkonen M; Naulaerts S; Op de Beeck K; Laukens K; Van Camp G; Weseler AR; Bast A; Haenen GRMM; Haegeman G; Vanden Berghe W Biochem Pharmacol; 2016 Jun; 109():48-61. PubMed ID: 27045103 [TBL] [Abstract][Full Text] [Related]
15. Epigenetic versus Genetic Deregulation of the KEAP1/NRF2 Axis in Solid Tumors: Focus on Methylation and Noncoding RNAs. Fabrizio FP; Sparaneo A; Trombetta D; Muscarella LA Oxid Med Cell Longev; 2018; 2018():2492063. PubMed ID: 29643973 [TBL] [Abstract][Full Text] [Related]
16. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Taguchi K; Motohashi H; Yamamoto M Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164 [TBL] [Abstract][Full Text] [Related]
17. Drug-Repositioning Screening for Keap1-Nrf2 Binding Inhibitors using Fluorescence Correlation Spectroscopy. Yoshizaki Y; Mori T; Ishigami-Yuasa M; Kikuchi E; Takahashi D; Zeniya M; Nomura N; Mori Y; Araki Y; Ando F; Mandai S; Kasagi Y; Arai Y; Sasaki E; Yoshida S; Kagechika H; Rai T; Uchida S; Sohara E Sci Rep; 2017 Jun; 7(1):3945. PubMed ID: 28638054 [TBL] [Abstract][Full Text] [Related]
18. Identification and Characterization of MCM3 as a Kelch-like ECH-associated Protein 1 (KEAP1) Substrate. Mulvaney KM; Matson JP; Siesser PF; Tamir TY; Goldfarb D; Jacobs TM; Cloer EW; Harrison JS; Vaziri C; Cook JG; Major MB J Biol Chem; 2016 Nov; 291(45):23719-23733. PubMed ID: 27621311 [TBL] [Abstract][Full Text] [Related]
19. The role of Nrf2-Keap1 signaling pathway in the antioxidant defense response induced by PAHs in the calm Ruditapes philippinarum. Wang H; Pan L; Si L; Miao J Fish Shellfish Immunol; 2018 Sep; 80():325-334. PubMed ID: 29920381 [TBL] [Abstract][Full Text] [Related]
20. CRL3s: The BTB-CUL3-RING E3 Ubiquitin Ligases. Wang P; Song J; Ye D Adv Exp Med Biol; 2020; 1217():211-223. PubMed ID: 31898230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]