BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3029658)

  • 1. Increased activity of the respiratory burst in cord blood neutrophils: kinetics of the NADPH oxidase enzyme system in subcellular fractions.
    Ambruso DR; Stork LC; Gibson BE; Thurman GW
    Pediatr Res; 1987 Feb; 21(2):205-10. PubMed ID: 3029658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidase activity in cord blood neutrophils: a balance between increased membrane associated cytochrome b558 and deficient cytosolic components.
    Chudgar UH; Thurman GW; Ambruso DR
    Pediatr Blood Cancer; 2005 Sep; 45(3):311-7. PubMed ID: 15700257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative metabolism of cord blood neutrophils: relationship to content and degranulation of cytoplasmic granules.
    Ambruso DR; Bentwood B; Henson PM; Johnston RB
    Pediatr Res; 1984 Nov; 18(11):1148-53. PubMed ID: 6096799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible activation of the neutrophil superoxide generating system by hexachlorocyclohexane: correlation with effects on a subcellular superoxide-generating fraction.
    English D; Schell M; Siakotos A; Gabig TG
    J Immunol; 1986 Jul; 137(1):283-90. PubMed ID: 2423606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane NADPH oxidase activity and cell size in bovine neonatal and adult neutrophils.
    Doré M; Slauson DO; Neilsen NR
    Pediatr Res; 1990 Oct; 28(4):327-31. PubMed ID: 2172900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phorbol myristate acetate-induced NADPH oxidase activity in human neutrophils: only half the story has been told.
    Lundqvist H; Follin P; Khalfan L; Dahlgren C
    J Leukoc Biol; 1996 Feb; 59(2):270-9. PubMed ID: 8604000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure of human neutrophils to chemotactic factors potentiates activation of the respiratory burst enzyme.
    Bender JG; McPhail LC; Van Epps DE
    J Immunol; 1983 May; 130(5):2316-23. PubMed ID: 6300243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of cytochrome b-245 translocation in the PMA stimulation of the human neutrophil NADPH-oxidase.
    Higson FK; Durbin L; Pavlotsky N; Tauber AI
    J Immunol; 1985 Jul; 135(1):519-24. PubMed ID: 2987348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the respiratory burst enzyme from human neutrophils in a cell-free system. Evidence for a soluble cofactor.
    McPhail LC; Shirley PS; Clayton CC; Snyderman R
    J Clin Invest; 1985 May; 75(5):1735-9. PubMed ID: 2987310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The respiratory burst of bovine neutrophils. Role of a b type cytochrome and coenzyme specificity.
    Morel F; Doussiere J; Stasia MJ; Vignais PV
    Eur J Biochem; 1985 Nov; 152(3):669-79. PubMed ID: 4054128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The respiratory burst of phagocytosis: biochemistry and subcellular localization.
    Borregaard N
    Immunol Lett; 1985; 11(3-4):165-71. PubMed ID: 3936781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of subcellular activation of the human neutrophil NADPH-oxidase by arachidonic acid, sodium dodecyl sulfate (SDS), and phorbol myristate acetate (PMA).
    Cox JA; Jeng AY; Blumberg PM; Tauber AI
    J Immunol; 1987 Mar; 138(6):1884-8. PubMed ID: 3102604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phorbol myristate acetate mediates redistribution of protein kinase C in human neutrophils: potential role in the activation of the respiratory burst enzyme.
    Wolfson M; McPhail LC; Nasrallah VN; Snyderman R
    J Immunol; 1985 Sep; 135(3):2057-62. PubMed ID: 3160785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical subcellular fractionation of neutrophils from patients with chronic granulomatous disease. Demonstration of the enzyme defect in four cases.
    Segal AW; Peters TJ
    Q J Med; 1978 Apr; 47(186):213-20. PubMed ID: 684156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinase-C activity in phorbol myristate acetate-stimulated neutrophils from newborn and adult cattle.
    Doré M; Neilsen NR; Slauson DO
    Am J Vet Res; 1992 Sep; 53(9):1679-84. PubMed ID: 1416376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different subcellular localization of cytochrome b and the dormant NADPH-oxidase in neutrophils and macrophages: effect on the production of reactive oxygen species during phagocytosis.
    Johansson A; Jesaitis AJ; Lundqvist H; Magnusson KE; Sjölin C; Karlsson A; Dahlgren C
    Cell Immunol; 1995 Mar; 161(1):61-71. PubMed ID: 7867086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat shock in human neutrophils: superoxide generation is inhibited by a mechanism distinct from heat-denaturation of NADPH oxidase and is protected by heat shock proteins in thermotolerant cells.
    Maridonneau-Parini I; Malawista SE; Stubbe H; Russo-Marie F; Polla BS
    J Cell Physiol; 1993 Jul; 156(1):204-11. PubMed ID: 8391007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular distribution of nitroblue tetrazolium reductase (NBT-R) in human polymorphonuclear leukocytes (PMN).
    Baehner RL
    J Lab Clin Med; 1975 Nov; 86(5):785-92. PubMed ID: 1185038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular localization of the superoxide-forming enzyme in human neutrophils.
    Dewald B; Baggiolini M; Curnutte JT; Babior BM
    J Clin Invest; 1979 Jan; 63(1):21-9. PubMed ID: 216707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of NADPH-oxidase activity in human polymorphonuclear neutrophils by lipophilic ascorbic acid derivatives.
    Schmid E; Figala V; Ullrich V
    Mol Pharmacol; 1994 May; 45(5):815-25. PubMed ID: 8190099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.