These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30296615)

  • 1. Functional specialization for feature-based and symmetry-based groupings in multiple object tracking.
    Wang C; Hu L; Hu S; Xu Y; Zhang X
    Cortex; 2018 Nov; 108():265-275. PubMed ID: 30296615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking.
    Wang C; Zhang X; Li Y; Lyu C
    Front Psychol; 2016; 7():657. PubMed ID: 27199875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical fMRI activation produced by attentive tracking of moving targets.
    Culham JC; Brandt SA; Cavanagh P; Kanwisher NG; Dale AM; Tootell RB
    J Neurophysiol; 1998 Nov; 80(5):2657-70. PubMed ID: 9819271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The causal role of the lateral occipital complex in visual mirror symmetry detection and grouping: an fMRI-guided TMS study.
    Bona S; Herbert A; Toneatto C; Silvanto J; Cattaneo Z
    Cortex; 2014 Feb; 51():46-55. PubMed ID: 24360359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I; Macaluso E
    Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using fMRI to distinguish components of the multiple object tracking task.
    Howe PD; Horowitz TS; Morocz IA; Wolfe J; Livingstone MS
    J Vis; 2009 Apr; 9(4):10.1-11. PubMed ID: 19757919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional connectivity indicates differential roles for the intraparietal sulcus and the superior parietal lobule in multiple object tracking.
    Alnæs D; Sneve MH; Richard G; Skåtun KC; Kaufmann T; Nordvik JE; Andreassen OA; Endestad T; Laeng B; Westlye LT
    Neuroimage; 2015 Dec; 123():129-37. PubMed ID: 26299796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of inferior frontal junction in controlling the spatially global effect of feature-based attention in human visual areas.
    Zhang X; Mlynaryk N; Ahmed S; Japee S; Ungerleider LG
    PLoS Biol; 2018 Jun; 16(6):e2005399. PubMed ID: 29939981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional specialization and generalization for grouping of stimuli based on colour and motion.
    Zeki S; Stutters J
    Neuroimage; 2013 Jun; 73():156-66. PubMed ID: 23415950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic feature-based grouping during multiple object tracking.
    Erlikhman G; Keane BP; Mettler E; Horowitz TS; Kellman PJ
    J Exp Psychol Hum Percept Perform; 2013 Dec; 39(6):1625-1637. PubMed ID: 23458095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of temporal synchrony as a binding cue for visual persistence in early visual areas: an fMRI study.
    Wong YJ; Aldcroft AJ; Large ME; Culham JC; Vilis T
    J Neurophysiol; 2009 Dec; 102(6):3461-8. PubMed ID: 19828729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cue-invariant activation in object-related areas of the human occipital lobe.
    Grill-Spector K; Kushnir T; Edelman S; Itzchak Y; Malach R
    Neuron; 1998 Jul; 21(1):191-202. PubMed ID: 9697863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex.
    Saygin AP; Sereno MI
    Cereb Cortex; 2008 Sep; 18(9):2158-68. PubMed ID: 18234687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spread of attention across features of a surface.
    Ernst ZR; Boynton GM; Jazayeri M
    J Neurophysiol; 2013 Nov; 110(10):2426-39. PubMed ID: 23883860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-Modal Attention Effects in the Vestibular Cortex during Attentive Tracking of Moving Objects.
    Frank SM; Sun L; Forster L; Tse PU; Greenlee MW
    J Neurosci; 2016 Dec; 36(50):12720-12728. PubMed ID: 27821579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual Prediction Error Spreads Across Object Features in Human Visual Cortex.
    Jiang J; Summerfield C; Egner T
    J Neurosci; 2016 Dec; 36(50):12746-12763. PubMed ID: 27810936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of distractors in multiple object tracking are modulated by the similarity of distractor and target features.
    Feria CS
    Perception; 2012; 41(3):287-304. PubMed ID: 22808583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human brain regions involved in direction discrimination.
    Cornette L; Dupont P; Rosier A; Sunaert S; Van Hecke P; Michiels J; Mortelmans L; Orban GA
    J Neurophysiol; 1998 May; 79(5):2749-65. PubMed ID: 9582242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of attention and detection signals during visual search.
    Shulman GL; McAvoy MP; Cowan MC; Astafiev SV; Tansy AP; d'Avossa G; Corbetta M
    J Neurophysiol; 2003 Nov; 90(5):3384-97. PubMed ID: 12917383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Causal involvement of visual area MT in global feature-based enhancement but not contingent attentional capture.
    Painter DR; Dux PE; Mattingley JB
    Neuroimage; 2015 Sep; 118():90-102. PubMed ID: 26067347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.