BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30296653)

  • 1. Testosterone-retinoic acid signaling directs spermatogonial differentiation and seasonal spermatogenesis in the Plateau pika (Ochotona curzoniae).
    Wang YJ; Jia GX; Yan RG; Guo SC; Tian F; Ma JB; Zhang RN; Li C; Zhang LZ; Du YR; Yang QE
    Theriogenology; 2019 Jan; 123():74-82. PubMed ID: 30296653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinoic acid availability drives the asynchronous initiation of spermatogonial differentiation in the mouse.
    Snyder EM; Small C; Griswold MD
    Biol Reprod; 2010 Nov; 83(5):783-90. PubMed ID: 20650878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the Spermatogonial Response to Retinoic Acid During the Onset of Spermatogenesis and Following Synchronization in the Neonatal Mouse Testis.
    Agrimson KS; Onken J; Mitchell D; Topping TB; Chiarini-Garcia H; Hogarth CA; Griswold MD
    Biol Reprod; 2016 Oct; 95(4):81. PubMed ID: 27488029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Retinoic Acid (RA) in Spermatogonial Differentiation.
    Busada JT; Geyer CB
    Biol Reprod; 2016 Jan; 94(1):10. PubMed ID: 26559678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The testicular transcriptome associated with spermatogonia differentiation initiated by gonadotrophin stimulation in the juvenile rhesus monkey (Macaca mulatta).
    Ramaswamy S; Walker WH; Aliberti P; Sethi R; Marshall GR; Smith A; Nourashrafeddin S; Belgorosky A; Chandran UR; Hedger MP; Plant TM
    Hum Reprod; 2017 Oct; 32(10):2088-2100. PubMed ID: 28938749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential responsiveness of spermatogonia to retinoic acid dictates precocious differentiation but not meiotic entry during steady-state spermatogenesis†.
    Johnson TA; Niedenberger BA; Kirsanov O; Harrington EV; Malachowski T; Geyer CB
    Biol Reprod; 2023 May; 108(5):822-836. PubMed ID: 36708226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinoid signaling controls spermatogonial differentiation by regulating expression of replication-dependent core histone genes.
    Chen Y; Ma L; Hogarth C; Wei G; Griswold MD; Tong MH
    Development; 2016 May; 143(9):1502-11. PubMed ID: 26965368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis.
    Endo T; Romer KA; Anderson EL; Baltus AE; de Rooij DG; Page DC
    Proc Natl Acad Sci U S A; 2015 May; 112(18):E2347-56. PubMed ID: 25902548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of transcriptional factor EB (TFEB) in differentiating spermatogonia potentially promotes cell migration in mouse seminiferous epithelium.
    Liu Y; Hu Y; Wang L; Xu C
    Reprod Biol Endocrinol; 2018 Oct; 16(1):105. PubMed ID: 30360758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential RA responsiveness directs formation of functionally distinct spermatogonial populations at the initiation of spermatogenesis in the mouse.
    Velte EK; Niedenberger BA; Serra ND; Singh A; Roa-DeLaCruz L; Hermann BP; Geyer CB
    Development; 2019 May; 146(12):. PubMed ID: 31023878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-autonomous requirement for mammalian target of rapamycin (Mtor) in spermatogonial proliferation and differentiation in the mouse†.
    Serra ND; Velte EK; Niedenberger BA; Kirsanov O; Geyer CB
    Biol Reprod; 2017 Apr; 96(4):816-828. PubMed ID: 28379293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential roles of gonadotropins to control pulsatile retinoic acid signaling during spermatogenesis.
    Nourashrafeddin S
    Med Hypotheses; 2015 Sep; 85(3):303-4. PubMed ID: 26141633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinoic acid regulates Kit translation during spermatogonial differentiation in the mouse.
    Busada JT; Chappell VA; Niedenberger BA; Kaye EP; Keiper BD; Hogarth CA; Geyer CB
    Dev Biol; 2015 Jan; 397(1):140-9. PubMed ID: 25446031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice.
    Huszar JM; Payne CJ
    Biol Reprod; 2013 Jan; 88(1):15. PubMed ID: 23221399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testis-Specific Lactate Dehydrogenase (LDH-C4) in Skeletal Muscle Enhances a Pika's Sprint-Running Capacity in Hypoxic Environment.
    Wang Y; Wei L; Wei D; Li X; Xu L; Wei L
    Int J Environ Res Public Health; 2015 Aug; 12(8):9218-36. PubMed ID: 26262630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinoic acid deficiency leads to an increase in spermatogonial stem number in the neonatal mouse testis, but excess retinoic acid results in no change.
    Agrimson KS; Oatley MJ; Mitchell D; Oatley JM; Griswold MD; Hogarth CA
    Dev Biol; 2017 Dec; 432(2):229-236. PubMed ID: 29037932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of 9-cis-retinoic acid on proliferation and differentiation of a spermatogonia and retinoid receptor gene expression in the vitamin A-deficient mouse testis.
    Gaemers IC; Sonneveld E; van Pelt AM; Schrans BH; Themmen AP; van der Saag PT; de Rooij DG
    Endocrinology; 1998 Oct; 139(10):4269-76. PubMed ID: 9751509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells in mouse seminiferous epithelium.
    Sugimoto R; Nabeshima Y; Yoshida S
    Mech Dev; 2012; 128(11-12):610-24. PubMed ID: 22200512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuregulins are essential for spermatogonial proliferation and meiotic initiation in neonatal mouse testis.
    Zhang J; Eto K; Honmyou A; Nakao K; Kiyonari H; Abé S
    Development; 2011 Aug; 138(15):3159-68. PubMed ID: 21715427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional evolution of leptin of Ochotona curzoniae in adaptive thermogenesis driven by cold environmental stress.
    Yang J; Bromage TG; Zhao Q; Xu BH; Gao WL; Tian HF; Tang HJ; Liu DW; Zhao XQ
    PLoS One; 2011; 6(6):e19833. PubMed ID: 21698227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.