BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 30296827)

  • 1. Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells.
    Rashad A; Mohamed-Ahmed S; Ojansivu M; Berstad K; Yassin MA; Kivijärvi T; Heggset EB; Syverud K; Mustafa K
    Biomacromolecules; 2018 Nov; 19(11):4307-4319. PubMed ID: 30296827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoregenerative Potential of 3D-Printed Poly
    Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells.
    Rumiński S; Ostrowska B; Jaroszewicz J; Skirecki T; Włodarski K; Święszkowski W; Lewandowska-Szumieł M
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e473-e485. PubMed ID: 27599449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
    Xu H; Wang C; Liu C; Li J; Peng Z; Guo J; Zhu L
    Tissue Eng Part A; 2022 Feb; 28(3-4):111-124. PubMed ID: 34157886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres.
    Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L
    Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of cartilage regeneration on 3D collagen-polycaprolactone scaffolds: Evaluation of growth media in static and in perfusion bioreactor dynamic culture.
    Theodoridis K; Aggelidou E; Manthou M; Demiri E; Bakopoulou A; Kritis A
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110403. PubMed ID: 31400614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells].
    Xu Y; Wei B; Zhou J; Yao Q; Wang L; Na J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Feb; 32(2):215-222. PubMed ID: 29806415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of Rat Mesenchymal Stromal Cells to Nanocellulose with Different Functional Groups.
    Rashad A; Grøndahl M; Heggset EB; Mustafa K; Syverud K
    ACS Appl Bio Mater; 2023 Mar; 6(3):987-998. PubMed ID: 36763504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells.
    Lin YH; Chuang TY; Chiang WH; Chen IP; Wang K; Shie MY; Chen YW
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109887. PubMed ID: 31500024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis.
    Tarafder S; Bose S
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9955-65. PubMed ID: 24826838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration.
    Li J; Yao Q; Xu Y; Zhang H; Li LL; Wang L
    Med Sci Monit; 2019 May; 25():4041-4050. PubMed ID: 31147532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite.
    Ebrahimi Z; Irani S; Ardeshirylajimi A; Seyedjafari E
    Sci Rep; 2022 Jul; 12(1):12359. PubMed ID: 35859093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications.
    Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifications in Gene Expression in the Process of Osteoblastic Differentiation of Multipotent Bone Marrow-Derived Human Mesenchymal Stem Cells Induced by a Novel Osteoinductive Porous Medical-Grade 3D-Printed Poly(ε-caprolactone)/β-tricalcium Phosphate Composite.
    López-González I; Zamora-Ledezma C; Sanchez-Lorencio MI; Tristante Barrenechea E; Gabaldón-Hernández JA; Meseguer-Olmo L
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenesis of 3D-Printed PCL/TCP/bdECM Scaffold Using Adipose-Derived Stem Cells Aggregates; An Experimental Study in the Canine Mandible.
    Lee JS; Park TH; Ryu JY; Kim DK; Oh EJ; Kim HM; Shim JH; Yun WS; Huh JB; Moon SH; Kang SS; Chung HY
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.