These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
448 related articles for article (PubMed ID: 30296941)
1. Food perception without ingestion leads to metabolic changes and irreversible developmental arrest in C. elegans. Kaplan REW; Webster AK; Chitrakar R; Dent JA; Baugh LR BMC Biol; 2018 Oct; 16(1):112. PubMed ID: 30296941 [TBL] [Abstract][Full Text] [Related]
2. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest. Kaplan RE; Chen Y; Moore BT; Jordan JM; Maxwell CS; Schindler AJ; Baugh LR PLoS Genet; 2015 Dec; 11(12):e1005731. PubMed ID: 26656736 [TBL] [Abstract][Full Text] [Related]
3. DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. Baugh LR; Sternberg PW Curr Biol; 2006 Apr; 16(8):780-5. PubMed ID: 16631585 [TBL] [Abstract][Full Text] [Related]
4. Regulation of signaling genes by TGFbeta during entry into dauer diapause in C. elegans. Liu T; Zimmerman KK; Patterson GI BMC Dev Biol; 2004 Sep; 4():11. PubMed ID: 15380030 [TBL] [Abstract][Full Text] [Related]
5. Ins-4 and daf-28 function redundantly to regulate C. elegans L1 arrest. Chen Y; Baugh LR Dev Biol; 2014 Oct; 394(2):314-26. PubMed ID: 25128585 [TBL] [Abstract][Full Text] [Related]
7. C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Fukuyama M; Rougvie AE; Rothman JH Curr Biol; 2006 Apr; 16(8):773-9. PubMed ID: 16631584 [TBL] [Abstract][Full Text] [Related]
8. A directed RNAi screen based on larval growth arrest reveals new modifiers of C. elegans insulin signaling. Billing O; Natarajan B; Mohammed A; Naredi P; Kao G PLoS One; 2012; 7(4):e34507. PubMed ID: 22511947 [TBL] [Abstract][Full Text] [Related]
9. [Genetics and evolution of developmental plasticity in the nematode C. elegans: Environmental induction of the dauer stage]. Billard B; Gimond C; Braendle C Biol Aujourdhui; 2020; 214(1-2):45-53. PubMed ID: 32773029 [TBL] [Abstract][Full Text] [Related]
14. Identification of late larval stage developmental checkpoints in Caenorhabditis elegans regulated by insulin/IGF and steroid hormone signaling pathways. Schindler AJ; Baugh LR; Sherwood DR PLoS Genet; 2014 Jun; 10(6):e1004426. PubMed ID: 24945623 [TBL] [Abstract][Full Text] [Related]
15. To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest. Baugh LR Genetics; 2013 Jul; 194(3):539-55. PubMed ID: 23824969 [TBL] [Abstract][Full Text] [Related]
16. A histone H4 lysine 20 methyltransferase couples environmental cues to sensory neuron control of developmental plasticity. Delaney CE; Chen AT; Graniel JV; Dumas KJ; Hu PJ Development; 2017 Apr; 144(7):1273-1282. PubMed ID: 28209779 [TBL] [Abstract][Full Text] [Related]
17. Prolonged quiescence delays somatic stem cell-like divisions in Caenorhabditis elegans and is controlled by insulin signaling. Olmedo M; Mata-Cabana A; Rodríguez-Palero MJ; García-Sánchez S; Fernández-Yañez A; Merrow M; Artal-Sanz M Aging Cell; 2020 Feb; 19(2):e13085. PubMed ID: 31852031 [TBL] [Abstract][Full Text] [Related]
19. Pervasive Positive and Negative Feedback Regulation of Insulin-Like Signaling in Kaplan REW; Maxwell CS; Codd NK; Baugh LR Genetics; 2019 Jan; 211(1):349-361. PubMed ID: 30425043 [TBL] [Abstract][Full Text] [Related]
20. Cell Non-autonomous Function of daf-18/PTEN in the Somatic Gonad Coordinates Somatic Gonad and Germline Development in C. elegans Dauer Larvae. Tenen CC; Greenwald I Curr Biol; 2019 Mar; 29(6):1064-1072.e8. PubMed ID: 30827916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]