These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30297356)

  • 1. The Expanding Molecular Genetics Tool Kit in Chlamydia.
    Valdivia RH; Bastidas RJ
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30297356
    [No Abstract]   [Full Text] [Related]  

  • 2. Emancipating Chlamydia: Advances in the Genetic Manipulation of a Recalcitrant Intracellular Pathogen.
    Bastidas RJ; Valdivia RH
    Microbiol Mol Biol Rev; 2016 Jun; 80(2):411-27. PubMed ID: 27030552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Considerations on Chlamydia trachomatis disease expression.
    Brunham RC; Rekart ML
    FEMS Immunol Med Microbiol; 2009 Mar; 55(2):162-6. PubMed ID: 19159424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydia trachomatis ChxR is a transcriptional regulator of virulence factors that function in in vivo host-pathogen interactions.
    Yang C; Kari L; Sturdevant GL; Song L; Patton MJ; Couch CE; Ilgenfritz JM; Southern TR; Whitmire WM; Briones M; Bonner C; Grant C; Hu P; McClarty G; Caldwell HD
    Pathog Dis; 2017 Apr; 75(3):. PubMed ID: 28369275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydia cell biology and pathogenesis.
    Elwell C; Mirrashidi K; Engel J
    Nat Rev Microbiol; 2016 Jun; 14(6):385-400. PubMed ID: 27108705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydia trachomatis and its interaction with the cellular retromer.
    Banhart S; Rose L; Aeberhard L; Koch-Edelmann S; Heuer D
    Int J Med Microbiol; 2018 Jan; 308(1):197-205. PubMed ID: 29122514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Markerless Gene Deletion by Floxed Cassette Allelic Exchange Mutagenesis in Chlamydia trachomatis.
    Keb G; Fields KA
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32065159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential protective effect of a G>A SNP in the 3'UTR of HLA-A for Chlamydia trachomatis symptomatology and severity of infection.
    Jansen ME; Branković I; Spaargaren J; Ouburg S; Morré SA
    Pathog Dis; 2016 Mar; 74(2):. PubMed ID: 26656886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drosophila melanogaster S2 cells: a model system to study Chlamydia interaction with host cells.
    Elwell C; Engel JN
    Cell Microbiol; 2005 May; 7(5):725-39. PubMed ID: 15839901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting induced pluripotent stem cell-derived macrophages to unravel host factors influencing Chlamydia trachomatis pathogenesis.
    Yeung ATY; Hale C; Lee AH; Gill EE; Bushell W; Parry-Smith D; Goulding D; Pickard D; Roumeliotis T; Choudhary J; Thomson N; Skarnes WC; Dougan G; Hancock REW
    Nat Commun; 2017 Apr; 8():15013. PubMed ID: 28440293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia trachomatis: the Persistent Pathogen.
    Witkin SS; Minis E; Athanasiou A; Leizer J; Linhares IM
    Clin Vaccine Immunol; 2017 Oct; 24(10):. PubMed ID: 28835360
    [No Abstract]   [Full Text] [Related]  

  • 12. Male genital tract immune response against
    Mackern-Oberti JP; Motrich RD; Damiani MT; Saka HA; Quintero CA; Sánchez LR; Moreno-Sosa T; Olivera C; Cuffini C; Rivero VE
    Reproduction; 2017 Oct; 154(4):R99-R110. PubMed ID: 28878094
    [No Abstract]   [Full Text] [Related]  

  • 13. Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects.
    Hafner LM; Timms P
    Expert Rev Vaccines; 2018 Jan; 17(1):57-69. PubMed ID: 29264970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Floxed-Cassette Allelic Exchange Mutagenesis Enables Markerless Gene Deletion in Chlamydia trachomatis and Can Reverse Cassette-Induced Polar Effects.
    Keb G; Hayman R; Fields KA
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30224436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of host genetics on susceptibility to human Chlamydia trachomatis disease.
    Mahdi OS
    Br J Biomed Sci; 2002; 59(2):128-32. PubMed ID: 12113404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mucosal immune response to Chlamydia trachomatis infection of the reproductive tract in women.
    Agrawal T; Vats V; Salhan S; Mittal A
    J Reprod Immunol; 2009 Dec; 83(1-2):173-8. PubMed ID: 19896206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlamydia trachomatis Is Responsible for Lipid Vacuolation in the Amniotic Epithelium of Fetal Gastroschisis.
    Feldkamp ML; Ward DM; Pysher TJ; Chambers CT
    Birth Defects Res; 2017 Jul; 109(13):1003-1010. PubMed ID: 28635162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host genetic contribution to the cellular immune response to Chlamydia trachomatis: Heritability estimate from a Gambian twin study.
    Bailey RL; Natividad-Sancho A; Fowler A; Peeling RW; Mabey DC; Whittle HC; Jepson AP
    Drugs Today (Barc); 2009 Nov; 45 Suppl B():45-50. PubMed ID: 20011694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [DNA sequence polymorphism of Chlamydia trachomatis omp1 gene].
    Chen LL; Wu YM; Lei D; Wu ZZ; Huang SJ
    Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):214-8. PubMed ID: 16736579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Wnt Signaling Pathways Impairs
    Kintner J; Moore CG; Whittimore JD; Butler M; Hall JV
    Front Cell Infect Microbiol; 2017; 7():501. PubMed ID: 29322031
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.