These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Disassembly of the Basu A; Yap MN Proc Natl Acad Sci U S A; 2017 Sep; 114(39):E8165-E8173. PubMed ID: 28894000 [TBL] [Abstract][Full Text] [Related]
3. The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis. Kline BC; McKay SL; Tang WW; Portnoy DA J Bacteriol; 2015 Feb; 197(3):581-91. PubMed ID: 25422304 [TBL] [Abstract][Full Text] [Related]
4. The hibernating 100S complex is a target of ribosome-recycling factor and elongation factor G in Basu A; Shields KE; Yap MF J Biol Chem; 2020 May; 295(18):6053-6063. PubMed ID: 32209660 [TBL] [Abstract][Full Text] [Related]
11. Survival of the drowsiest: the hibernating 100S ribosome in bacterial stress management. Gohara DW; Yap MF Curr Genet; 2018 Aug; 64(4):753-760. PubMed ID: 29243175 [TBL] [Abstract][Full Text] [Related]
12. Role of HPF (hibernation promoting factor) in translational activity in Escherichia coli. Ueta M; Ohniwa RL; Yoshida H; Maki Y; Wada C; Wada A J Biochem; 2008 Mar; 143(3):425-33. PubMed ID: 18174192 [TBL] [Abstract][Full Text] [Related]
13. Hibernating ribosomes exhibit chaperoning activity but can resist unfolded protein-mediated subunit dissociation. Ferdosh S; Banerjee S; Pathak BK; Sengupta J; Barat C FEBS J; 2021 Feb; 288(4):1305-1324. PubMed ID: 32649051 [TBL] [Abstract][Full Text] [Related]
14. The 100S ribosome: ribosomal hibernation induced by stress. Yoshida H; Wada A Wiley Interdiscip Rev RNA; 2014; 5(5):723-32. PubMed ID: 24944100 [TBL] [Abstract][Full Text] [Related]
15. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1. Beckert B; Turk M; Czech A; Berninghausen O; Beckmann R; Ignatova Z; Plitzko JM; Wilson DN Nat Microbiol; 2018 Oct; 3(10):1115-1121. PubMed ID: 30177741 [TBL] [Abstract][Full Text] [Related]
16. Bidirectional sequestration between a bacterial hibernation factor and a glutamate metabolizing protein. Ranava D; Scheidler CM; Pfanzelt M; Fiedler M; Sieber SA; Schneider S; Yap MF Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2207257119. PubMed ID: 36122228 [TBL] [Abstract][Full Text] [Related]
17. Structures and dynamics of hibernating ribosomes from Khusainov I; Vicens Q; Ayupov R; Usachev K; Myasnikov A; Simonetti A; Validov S; Kieffer B; Yusupova G; Yusupov M; Hashem Y EMBO J; 2017 Jul; 36(14):2073-2087. PubMed ID: 28645916 [TBL] [Abstract][Full Text] [Related]
18. A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy. Franken LE; Oostergetel GT; Pijning T; Puri P; Arkhipova V; Boekema EJ; Poolman B; Guskov A Nat Commun; 2017 Sep; 8(1):722. PubMed ID: 28959045 [TBL] [Abstract][Full Text] [Related]
19. MsaB and CodY Interact To Regulate Staphylococcus aureus Capsule in a Nutrient-Dependent Manner. Batte JL; Sahukhal GS; Elasri MO J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29941424 [No Abstract] [Full Text] [Related]
20. Nutritional Regulation of the Sae Two-Component System by CodY in Staphylococcus aureus. Mlynek KD; Sause WE; Moormeier DE; Sadykov MR; Hill KR; Torres VJ; Bayles KW; Brinsmade SR J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378891 [No Abstract] [Full Text] [Related] [Next] [New Search]