These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 30297357)

  • 1. Thermal and Nutritional Regulation of Ribosome Hibernation in Staphylococcus aureus.
    Basu A; Shields KE; Eickhoff CS; Hoft DF; Yap MN
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30297357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disassembly of the
    Basu A; Yap MN
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):E8165-E8173. PubMed ID: 28894000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis.
    Kline BC; McKay SL; Tang WW; Portnoy DA
    J Bacteriol; 2015 Feb; 197(3):581-91. PubMed ID: 25422304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hibernating 100S complex is a target of ribosome-recycling factor and elongation factor G in
    Basu A; Shields KE; Yap MF
    J Biol Chem; 2020 May; 295(18):6053-6063. PubMed ID: 32209660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hibernation-Promoting Factor Sequesters Staphylococcus aureus Ribosomes to Antagonize RNase R-Mediated Nucleolytic Degradation.
    LipoĊ„ska A; Yap MF
    mBio; 2021 Aug; 12(4):e0033421. PubMed ID: 34253058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of 100S ribosomes in Staphylococcus aureus by the hibernation promoting factor homolog SaHPF.
    Ueta M; Wada C; Wada A
    Genes Cells; 2010 Jan; 15(1):43-58. PubMed ID: 20015224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation of two distinct types of 100S ribosome in bacteria.
    Ueta M; Wada C; Daifuku T; Sako Y; Bessho Y; Kitamura A; Ohniwa RL; Morikawa K; Yoshida H; Kato T; Miyata T; Namba K; Wada A
    Genes Cells; 2013 Jul; 18(7):554-74. PubMed ID: 23663662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hibernation promoting factor of Betaproteobacteria Comamonas testosteroni cannot induce 100S ribosome formation but stabilizes 70S ribosomal particles.
    Ueta M; Wada A; Wada C
    Genes Cells; 2024 Aug; 29(8):613-634. PubMed ID: 38937957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosome hibernation factor promotes Staphylococcal survival and differentially represses translation.
    Basu A; Yap MN
    Nucleic Acids Res; 2016 Jun; 44(10):4881-93. PubMed ID: 27001516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus.
    Matzov D; Aibara S; Basu A; Zimmerman E; Bashan A; Yap MF; Amunts A; Yonath AE
    Nat Commun; 2017 Sep; 8(1):723. PubMed ID: 28959035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival of the drowsiest: the hibernating 100S ribosome in bacterial stress management.
    Gohara DW; Yap MF
    Curr Genet; 2018 Aug; 64(4):753-760. PubMed ID: 29243175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of HPF (hibernation promoting factor) in translational activity in Escherichia coli.
    Ueta M; Ohniwa RL; Yoshida H; Maki Y; Wada C; Wada A
    J Biochem; 2008 Mar; 143(3):425-33. PubMed ID: 18174192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hibernating ribosomes exhibit chaperoning activity but can resist unfolded protein-mediated subunit dissociation.
    Ferdosh S; Banerjee S; Pathak BK; Sengupta J; Barat C
    FEBS J; 2021 Feb; 288(4):1305-1324. PubMed ID: 32649051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 100S ribosome: ribosomal hibernation induced by stress.
    Yoshida H; Wada A
    Wiley Interdiscip Rev RNA; 2014; 5(5):723-32. PubMed ID: 24944100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1.
    Beckert B; Turk M; Czech A; Berninghausen O; Beckmann R; Ignatova Z; Plitzko JM; Wilson DN
    Nat Microbiol; 2018 Oct; 3(10):1115-1121. PubMed ID: 30177741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional sequestration between a bacterial hibernation factor and a glutamate metabolizing protein.
    Ranava D; Scheidler CM; Pfanzelt M; Fiedler M; Sieber SA; Schneider S; Yap MF
    Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2207257119. PubMed ID: 36122228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures and dynamics of hibernating ribosomes from
    Khusainov I; Vicens Q; Ayupov R; Usachev K; Myasnikov A; Simonetti A; Validov S; Kieffer B; Yusupova G; Yusupov M; Hashem Y
    EMBO J; 2017 Jul; 36(14):2073-2087. PubMed ID: 28645916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy.
    Franken LE; Oostergetel GT; Pijning T; Puri P; Arkhipova V; Boekema EJ; Poolman B; Guskov A
    Nat Commun; 2017 Sep; 8(1):722. PubMed ID: 28959045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MsaB and CodY Interact To Regulate Staphylococcus aureus Capsule in a Nutrient-Dependent Manner.
    Batte JL; Sahukhal GS; Elasri MO
    J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29941424
    [No Abstract]   [Full Text] [Related]  

  • 20. Nutritional Regulation of the Sae Two-Component System by CodY in Staphylococcus aureus.
    Mlynek KD; Sause WE; Moormeier DE; Sadykov MR; Hill KR; Torres VJ; Bayles KW; Brinsmade SR
    J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378891
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.