BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30297389)

  • 1. Kinesin-binding-triggered conformation switching of microtubules contributes to polarized transport.
    Shima T; Morikawa M; Kaneshiro J; Kambara T; Kamimura S; Yagi T; Iwamoto H; Uemura S; Shigematsu H; Shirouzu M; Ichimura T; Watanabe TM; Nitta R; Okada Y; Hirokawa N
    J Cell Biol; 2018 Dec; 217(12):4164-4183. PubMed ID: 30297389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinesin expands and stabilizes the GDP-microtubule lattice.
    Peet DR; Burroughs NJ; Cross RA
    Nat Nanotechnol; 2018 May; 13(5):386-391. PubMed ID: 29531331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray and Cryo-EM structures reveal mutual conformational changes of Kinesin and GTP-state microtubules upon binding.
    Morikawa M; Yajima H; Nitta R; Inoue S; Ogura T; Sato C; Hirokawa N
    EMBO J; 2015 May; 34(9):1270-86. PubMed ID: 25777528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large conformational changes in a kinesin motor catalyzed by interaction with microtubules.
    Hirose K; Akimaru E; Akiba T; Endow SA; Amos LA
    Mol Cell; 2006 Sep; 23(6):913-23. PubMed ID: 16973442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy.
    Yajima H; Ogura T; Nitta R; Okada Y; Sato C; Hirokawa N
    J Cell Biol; 2012 Aug; 198(3):315-22. PubMed ID: 22851320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner.
    Bell KM; Cha HK; Sindelar CV; Cochran JC
    J Biol Chem; 2017 Sep; 292(35):14680-14694. PubMed ID: 28701465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ATP gate controls tubulin binding by the tethered head of kinesin-1.
    Alonso MC; Drummond DR; Kain S; Hoeng J; Amos L; Cross RA
    Science; 2007 Apr; 316(5821):120-3. PubMed ID: 17412962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ectopic A-lattice seams destabilize microtubules.
    Katsuki M; Drummond DR; Cross RA
    Nat Commun; 2014; 5():3094. PubMed ID: 24463734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro motility of liver connexin vesicles along microtubules utilizes kinesin motors.
    Fort AG; Murray JW; Dandachi N; Davidson MW; Dermietzel R; Wolkoff AW; Spray DC
    J Biol Chem; 2011 Jul; 286(26):22875-85. PubMed ID: 21536677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoration of microtubules in solution by the kinesin-14, Ncd.
    Hjelm RP; Stone DB; Fletterick RJ; Mendelson RA
    Acta Crystallogr D Biol Crystallogr; 2010 Nov; 66(Pt 11):1218-23. PubMed ID: 21041940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins.
    Atherton J; Farabella I; Yu IM; Rosenfeld SS; Houdusse A; Topf M; Moores CA
    Elife; 2014 Sep; 3():e03680. PubMed ID: 25209998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Native kinesin-1 does not bind preferentially to GTP-tubulin-rich microtubules in vitro.
    Li Q; King SJ; Xu J
    Cytoskeleton (Hoboken); 2017 Sep; 74(9):356-366. PubMed ID: 28699205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport.
    Nakata T; Niwa S; Okada Y; Perez F; Hirokawa N
    J Cell Biol; 2011 Jul; 194(2):245-55. PubMed ID: 21768290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Microtubule-Trapped Human Kinesin-5 and Its Mechanism of Inhibition Revealed Using Cryoelectron Microscopy.
    Peña A; Sweeney A; Cook AD; Locke J; Topf M; Moores CA
    Structure; 2020 Apr; 28(4):450-457.e5. PubMed ID: 32084356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay between the Kinesin and Tubulin Mechanochemical Cycles Underlies Microtubule Tip Tracking by the Non-motile Ciliary Kinesin Kif7.
    Jiang S; Mani N; Wilson-Kubalek EM; Ku PI; Milligan RA; Subramanian R
    Dev Cell; 2019 Jun; 49(5):711-730.e8. PubMed ID: 31031197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the kinesin-13 neck in microtubule depolymerization.
    Moores CA; Cooper J; Wagenbach M; Ovechkina Y; Wordeman L; Milligan RA
    Cell Cycle; 2006 Aug; 5(16):1812-5. PubMed ID: 16929184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An atomistic view of microtubule stabilization by GTP.
    Quiniou E; Guichard P; Perahia D; Marco S; Mouawad L
    Structure; 2013 May; 21(5):833-43. PubMed ID: 23623730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the molecular mechanism of the multitasking kinesin-8 motor.
    Peters C; Brejc K; Belmont L; Bodey AJ; Lee Y; Yu M; Guo J; Sakowicz R; Hartman J; Moores CA
    EMBO J; 2010 Oct; 29(20):3437-47. PubMed ID: 20818331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A small-molecule activator of kinesin-1 drives remodeling of the microtubule network.
    Randall TS; Yip YY; Wallock-Richards DJ; Pfisterer K; Sanger A; Ficek W; Steiner RA; Beavil AJ; Parsons M; Dodding MP
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13738-13743. PubMed ID: 29229862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinesin and tau bind to distinct sites on microtubules.
    Marya PK; Syed Z; Fraylich PE; Eagles PA
    J Cell Sci; 1994 Jan; 107 ( Pt 1)():339-44. PubMed ID: 7909814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.