These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 30297645)
1. Preparation of Self-supporting Bagasse Cellulose Nanofibrils Hydrogels Induced by Zinc Ions. Lu P; Liu R; Liu X; Wu M Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30297645 [TBL] [Abstract][Full Text] [Related]
2. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites. Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644 [TBL] [Abstract][Full Text] [Related]
3. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Zhou Y; Fu S; Zhang L; Zhan H; Levit MV Carbohydr Polym; 2014 Jan; 101():75-82. PubMed ID: 24299751 [TBL] [Abstract][Full Text] [Related]
4. Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Dong H; Snyder JF; Williams KS; Andzelm JW Biomacromolecules; 2013 Sep; 14(9):3338-45. PubMed ID: 23919541 [TBL] [Abstract][Full Text] [Related]
5. Cellulose nanofibrils (CNFs) in uniform diameter: Capturing the impact of carboxyl group on dispersion and Re-dispersion of CNFs suspensions. Zai Z; Yan M; Shi C; Zhang L; Lu H; Xiong Z; Ma J Int J Biol Macromol; 2022 May; 207():23-30. PubMed ID: 35248603 [TBL] [Abstract][Full Text] [Related]
6. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Lu P; Yang Y; Liu R; Liu X; Ma J; Wu M; Wang S Carbohydr Polym; 2020 Dec; 249():116831. PubMed ID: 32933676 [TBL] [Abstract][Full Text] [Related]
7. Structure and rheology of aqueous suspensions and hydrogels of cellulose nanofibrils: Effect of volume fraction and ionic strength. Fneich F; Ville J; Seantier B; Aubry T Carbohydr Polym; 2019 May; 211():315-321. PubMed ID: 30824095 [TBL] [Abstract][Full Text] [Related]
8. Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Dong H; Snyder JF; Tran DT; Leadore JL Carbohydr Polym; 2013 Jun; 95(2):760-7. PubMed ID: 23648039 [TBL] [Abstract][Full Text] [Related]
9. Probing metal-carboxylate interactions in cellulose nanofibrils-based hydrogels using nonlinear oscillatory rheology. Song Y; Kim B; Park JD; Lee D Carbohydr Polym; 2023 Jan; 300():120262. PubMed ID: 36372514 [TBL] [Abstract][Full Text] [Related]
10. Modulation of Assembly and Dynamics in Colloidal Hydrogels via Ionic Bridge from Cellulose Nanofibrils and Poly(ethylene glycol). Yang J; Zhang X; Ma M; Xu F ACS Macro Lett; 2015 Aug; 4(8):829-833. PubMed ID: 35596504 [TBL] [Abstract][Full Text] [Related]
11. Highly absorbent cellulose nanofibrils aerogels prepared by supercritical drying. Darpentigny C; Nonglaton G; Bras J; Jean B Carbohydr Polym; 2020 Feb; 229():115560. PubMed ID: 31826439 [TBL] [Abstract][Full Text] [Related]
12. Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin. Hujaya SD; Lorite GS; Vainio SJ; Liimatainen H Acta Biomater; 2018 Jul; 75():346-357. PubMed ID: 29885527 [TBL] [Abstract][Full Text] [Related]
13. Zwitterionic Cellulose Nanofibrils with High Salt Sensitivity and Tolerance. Wang A; Yuan Z; Wang C; Luo L; Zhang W; Geng S; Qu J; Wei B; Wen Y Biomacromolecules; 2020 Apr; 21(4):1471-1479. PubMed ID: 32069405 [TBL] [Abstract][Full Text] [Related]
14. Surface and structure characteristics, self-assembling, and solvent compatibility of holocellulose nanofibrils. Gu J; Hsieh YL ACS Appl Mater Interfaces; 2015 Feb; 7(7):4192-201. PubMed ID: 25635536 [TBL] [Abstract][Full Text] [Related]
15. Rheology of semi-dilute suspensions of carboxylated cellulose nanofibrils. Jowkarderis L; van de Ven TG Carbohydr Polym; 2015 Jun; 123():416-23. PubMed ID: 25843875 [TBL] [Abstract][Full Text] [Related]
16. Characterization of Concentration-Dependent Gelation Behavior of Aqueous 2,2,6,6-Tetramethylpiperidine-1-oxyl-Cellulose Nanocrystal Dispersions Using Dynamic Light Scattering. Zhou Y; Fujisawa S; Saito T; Isogai A Biomacromolecules; 2019 Feb; 20(2):750-757. PubMed ID: 30557007 [TBL] [Abstract][Full Text] [Related]
17. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils. Chen S; Yue N; Cui M; Penkova A; Huang R; Qi W; He Z; Su R Carbohydr Polym; 2022 Oct; 294():119803. PubMed ID: 35868763 [TBL] [Abstract][Full Text] [Related]
18. High-Strength, Tough, and Self-Healing Nanocomposite Physical Hydrogels Based on the Synergistic Effects of Dynamic Hydrogen Bond and Dual Coordination Bonds. Shao C; Chang H; Wang M; Xu F; Yang J ACS Appl Mater Interfaces; 2017 Aug; 9(34):28305-28318. PubMed ID: 28771308 [TBL] [Abstract][Full Text] [Related]
19. Cellulose Nanofibrils-based Hydrogels for Biomedical Applications: Progresses and Challenges. Liu H; Liu K; Han X; Xie H; Si C; Liu W; Bae Y Curr Med Chem; 2020; 27(28):4622-4646. PubMed ID: 32124687 [TBL] [Abstract][Full Text] [Related]
20. Metal Ion Mediated Cellulose Nanofibrils Transient Network in Covalently Cross-linked Hydrogels: Mechanistic Insight into Morphology and Dynamics. Yang J; Xu F; Han CR Biomacromolecules; 2017 Mar; 18(3):1019-1028. PubMed ID: 28192670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]