These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 30297645)
21. Intelligent pH- and ammonia-sensitive indicator films using neutral red immobilized onto cellulose nanofibrils. Khanjanzadeh H; Park BD; Pirayesh H Carbohydr Polym; 2022 Nov; 296():119910. PubMed ID: 36087970 [TBL] [Abstract][Full Text] [Related]
22. Unidirectional Swelling of Dynamic Cellulose Nanofibril Networks: A Platform for Tunable Hydrogels and Aerogels with 3D Shapeability. Benselfelt T; Wågberg L Biomacromolecules; 2019 Jun; 20(6):2406-2412. PubMed ID: 31050412 [TBL] [Abstract][Full Text] [Related]
23. 3D printing of a bio-based ink made of cross-linked cellulose nanofibrils with various metal cations. Mietner JB; Jiang X; Edlund U; Saake B; Navarro JRG Sci Rep; 2021 Mar; 11(1):6461. PubMed ID: 33742068 [TBL] [Abstract][Full Text] [Related]
24. Oil-in-Water Emulsions Stabilized by Cellulose Nanofibrils-The Effects of Ionic Strength and pH. Aaen R; Brodin FW; Simon S; Heggset EB; Syverud K Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30769791 [TBL] [Abstract][Full Text] [Related]
25. Influence of formic acid esterified cellulose nanofibrils on compressive strength, resilience and thermal stability of polyvinyl alcohol-xylan hydrogel. Fang W; Song T; Wang L; Han T; Xiang Z; Rojas OJ Carbohydr Polym; 2023 May; 308():120663. PubMed ID: 36813346 [TBL] [Abstract][Full Text] [Related]
26. Oriented Cellulose Nanopaper (OCNP) based on bagasse cellulose nanofibrils. Djafari Petroudy SR; Rasooly Garmaroody E; Rudi H Carbohydr Polym; 2017 Feb; 157():1883-1891. PubMed ID: 27987908 [TBL] [Abstract][Full Text] [Related]
27. Structure-properties relationships of defined CNF single-networks crosslinked by telechelic PEGs. Cortes Ruiz MF; Garemark J; Ritter M; Brusentsev Y; Larsson PT; Olsén P; Wågberg L Carbohydr Polym; 2024 Sep; 339():122245. PubMed ID: 38823913 [TBL] [Abstract][Full Text] [Related]
28. Low-energy preparation of cellulose nanofibers from sugarcane bagasse by modulating the surface charge density. Pinto LO; Bernardes JS; Rezende CA Carbohydr Polym; 2019 Aug; 218():145-153. PubMed ID: 31221315 [TBL] [Abstract][Full Text] [Related]
29. Rheology of Suspensions of TEMPO-Oxidised and Cationic Cellulose Nanofibrils-The Effect of Chemical Pre-Treatment. Alves L; Magalhães S; Pedrosa JFS; Ferreira PJT; Gamelas JAF; Rasteiro MG Gels; 2024 May; 10(6):. PubMed ID: 38920914 [TBL] [Abstract][Full Text] [Related]
30. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Du H; Liu W; Zhang M; Si C; Zhang X; Li B Carbohydr Polym; 2019 Apr; 209():130-144. PubMed ID: 30732792 [TBL] [Abstract][Full Text] [Related]
31. Effect of the counter-ion on nanocellulose hydrogels and their superabsorbent structure and properties. Barajas-Ledesma RM; Hossain L; Wong VNL; Patti AF; Garnier G J Colloid Interface Sci; 2021 Oct; 599():140-148. PubMed ID: 33933789 [TBL] [Abstract][Full Text] [Related]
32. Tuning the water interactions of cellulose nanofibril hydrogels using willow bark extract. Huynh N; Valle-Delgado JJ; Fang W; Arola S; Österberg M Carbohydr Polym; 2023 Oct; 317():121095. PubMed ID: 37364945 [TBL] [Abstract][Full Text] [Related]
33. Regioselectively Carboxylated Cellulose Nanofibril Models from Dissolving Pulp: C6 via TEMPO Oxidation and C2,C3 via Periodate-Chlorite Oxidation. Guo M; Ede JD; Sayes CM; Shatkin JA; Stark N; Hsieh YL Nanomaterials (Basel); 2024 Mar; 14(5):. PubMed ID: 38470807 [TBL] [Abstract][Full Text] [Related]
34. Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels. Wei J; Chen Y; Liu H; Du C; Yu H; Zhou Z Carbohydr Polym; 2016 Aug; 147():201-207. PubMed ID: 27178925 [TBL] [Abstract][Full Text] [Related]
35. Hydrogels prepared from cellulose nanofibrils via ferric ion-mediated crosslinking reaction for protecting drilling fluid. Liu X; Qu J; Wang A; Wang C; Chen B; Wang Z; Wu B; Wei B; Wen Y; Yuan Z Carbohydr Polym; 2019 May; 212():67-74. PubMed ID: 30832882 [TBL] [Abstract][Full Text] [Related]
36. Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering. Abouzeid RE; Khiari R; Beneventi D; Dufresne A Biomacromolecules; 2018 Nov; 19(11):4442-4452. PubMed ID: 30301348 [TBL] [Abstract][Full Text] [Related]
37. Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM). Zhou Y; Fu S; Zhang L; Zhan H Carbohydr Polym; 2013 Sep; 97(2):429-35. PubMed ID: 23911467 [TBL] [Abstract][Full Text] [Related]
38. Controlled Polyelectrolyte Association of Chitosan and Carboxylated Nano-Fibrillated Cellulose by Desalting. Amine S; Montembault A; Fumagalli M; Osorio-Madrazo A; David L Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34205669 [TBL] [Abstract][Full Text] [Related]
39. Metal ion and hydrogen bonding synergistically mediated carboxylated lignin/cellulose nanofibrils composite film. Luo D; Sun G; Wang Y; Shu X; Chen J; Sun M; Liu X; Liu C; Xiao H; Xu T; Dai H; Zhou X; Huang C; Bian H Carbohydr Polym; 2024 Jan; 323():121456. PubMed ID: 37940315 [TBL] [Abstract][Full Text] [Related]
40. Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells. Gorgieva S; Girandon L; Kokol V Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():478-489. PubMed ID: 28183635 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]