These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30297670)

  • 1. Diffusivities and Atomic Mobilities in bcc Ti-Mo-Zr Alloys.
    Bai W; Xu G; Tan M; Yang Z; Zeng L; Wu D; Liu L; Zhang L
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30297670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A MGI-oriented investigation of the Young's modulus and its application to the development of a novel Ti-Nb-Zr-Cr bio-alloy.
    Ling J; Chen W; Sheng Y; Li W; Zhang L; Du Y
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110265. PubMed ID: 31753343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of β-phase stability in elemental blended Ti-Mo and Ti-Mo-Zr alloys.
    Mohan P; Rajak DK; Pruncu CI; Behera A; Amigó-Borrás V; Elshalakany AB
    Micron; 2021 Mar; 142():102992. PubMed ID: 33333416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Zr Addition on the Microstructural Evolution, Mechanical Properties, and Corrosion Behavior of Novel Biomedical Ti-Zr-Mo-Mn Alloys.
    Li Z; Wo J; Fu Y; Xu X; Wang B; Liu H; You D; Sun G; Li W; Wang X
    ACS Biomater Sci Eng; 2023 Dec; 9(12):6935-6946. PubMed ID: 37941371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Scandium on the Structure, Microstructure and Superconductivity of Equimolar Sc-Hf-Nb-Ta-Ti-Zr Refractory High-Entropy Alloys.
    Krnel M; Jelen A; Vrtnik S; Luzar J; Gačnik D; Koželj P; Wencka M; Meden A; Hu Q; Guo S; Dolinšek J
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials.
    Nagase T; Iijima Y; Matsugaki A; Ameyama K; Nakano T
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110322. PubMed ID: 31761171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys.
    Banerjee R; Nag S; Stechschulte J; Fraser HL
    Biomaterials; 2004 Aug; 25(17):3413-9. PubMed ID: 15020114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of biocompatibility of Ti-Mo-Sn-Zr superelastic alloy.
    Nunome S; Kanetaka H; Kudo TA; Endoh K; Hosoda H; Igarashi K
    J Biomater Appl; 2015 Jul; 30(1):119-30. PubMed ID: 25659946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-efficiency combinatorial approach as an effective tool for accelerating metallic biomaterials research and discovery.
    Zhang XD; Liu LB; Zhao JC; Wang JL; Zheng F; Jin ZP
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():273-80. PubMed ID: 24863225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.
    Biesiekierski A; Ping D; Li Y; Lin J; Munir KS; Yamabe-Mitarai Y; Wen C
    Acta Biomater; 2017 Apr; 53():549-558. PubMed ID: 28163238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Zr Addition on the Microstructure and Hydrogenation Kinetics of Ti
    Zeng Q; Wang F; Li Z; Rong M; Wang J; Wang Z
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of low-modulus biomedical β Ti-Nb-Zr alloys based on single-crystal elastic constants modeling.
    Wang X; Zhang L; Guo Z; Jiang Y; Tao X; Liu L
    J Mech Behav Biomed Mater; 2016 Sep; 62():310-318. PubMed ID: 27235781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and Properties of Ti-Zr-Mo Alloys Fabricated by Laser Directed Energy Deposition.
    Zhang J; Wang C; Shareef N
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic Diffusion Couple for Mapping Microstructural and Mechanical Data on Ti⁻Al⁻Mo Titanium Alloys.
    Chen Y; Kou H; Cheng L; Zhang Y; Yu Y; Lu Y
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29966247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review in titanium-zirconium binary alloy for use in dental implants: Is there an ideal Ti-Zr composing ratio?
    Zhao Q; Ueno T; Wakabayashi N
    Jpn Dent Sci Rev; 2023 Dec; 59():28-37. PubMed ID: 36819742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys.
    Ijaz MF; Kim HY; Hosoda H; Miyazaki S
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():11-20. PubMed ID: 25579891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Annealing on Microstructure and Mechanical Properties of Al
    Zhuang YX; Zhang XL; Gu XY
    Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications.
    Nnamchi PS; Obayi CS; Todd I; Rainforth MW
    J Mech Behav Biomed Mater; 2016 Jul; 60():68-77. PubMed ID: 26773649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Effective Strategy to Maintain the CALPHAD Atomic Mobility Database of Multicomponent Systems and Its Application to Hcp Mg-Al-Zn-Sn Alloys.
    Cheng T; Zhong J; Zhang L
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.
    Zhou FY; Qiu KJ; Li HF; Huang T; Wang BL; Li L; Zheng YF
    Acta Biomater; 2013 Dec; 9(12):9578-87. PubMed ID: 23928334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.