These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 30297781)
21. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. Rani A; Sharma A; Rajagopal R; Adak T; Bhatnagar RK BMC Microbiol; 2009 May; 9():96. PubMed ID: 19450290 [TBL] [Abstract][Full Text] [Related]
22. Additional Feeding Reveals Differences in Immune Recognition and Growth of Kwon H; Simões ML; Reynolds RA; Dimopoulos G; Smith RC mSphere; 2021 Mar; 6(2):. PubMed ID: 33789941 [TBL] [Abstract][Full Text] [Related]
23. Overabundance of Pelloquin B; Kristan M; Edi C; Meiwald A; Clark E; Jeffries CL; Walker T; Dada N; Messenger LA Microbiol Spectr; 2021 Oct; 9(2):e0015721. PubMed ID: 34668745 [TBL] [Abstract][Full Text] [Related]
24. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells. Yamamoto DS; Sumitani M; Kasashima K; Sezutsu H; Matsuoka H PLoS Pathog; 2016 Sep; 12(9):e1005872. PubMed ID: 27598328 [TBL] [Abstract][Full Text] [Related]
25. The tripartite interactions between the mosquito, its microbiota and Plasmodium. Romoli O; Gendrin M Parasit Vectors; 2018 Mar; 11(1):200. PubMed ID: 29558973 [TBL] [Abstract][Full Text] [Related]
26. Phenotypic dissection of a Plasmodium-refractory strain of malaria vector Anopheles stephensi: the reduced susceptibility to P. berghei and P. yoelii. Shinzawa N; Ishino T; Tachibana M; Tsuboi T; Torii M PLoS One; 2013; 8(5):e63753. PubMed ID: 23717475 [TBL] [Abstract][Full Text] [Related]
27. Paratransgenesis to control malaria vectors: a semi-field pilot study. Mancini MV; Spaccapelo R; Damiani C; Accoti A; Tallarita M; Petraglia E; Rossi P; Cappelli A; Capone A; Peruzzi G; Valzano M; Picciolini M; Diabaté A; Facchinelli L; Ricci I; Favia G Parasit Vectors; 2016 Mar; 9():140. PubMed ID: 26965746 [TBL] [Abstract][Full Text] [Related]
28. Combining transgenesis with paratransgenesis to fight malaria. Huang W; Vega-Rodriguez J; Kizito C; Cha SJ; Jacobs-Lorena M Elife; 2022 Oct; 11():. PubMed ID: 36281969 [TBL] [Abstract][Full Text] [Related]
29. 16S rRNA gene-based identification of Elizabethkingia meningoseptica (Flavobacteriales: Flavobacteriaceae) as a dominant midgut bacterium of the Asian malaria vector Anopheles stephensi (Dipteria: Culicidae) with antimicrobial activities. Ngwa CJ; Glöckner V; Abdelmohsen UR; Scheuermayer M; Fischer R; Hentschel U; Pradel G J Med Entomol; 2013 Mar; 50(2):404-14. PubMed ID: 23540130 [TBL] [Abstract][Full Text] [Related]
30. Inhibition of Plasmodium berghei Development in Mosquitoes by Effector Proteins Secreted from Asaia sp. Bacteria Using a Novel Native Secretion Signal. Bongio NJ; Lampe DJ PLoS One; 2015; 10(12):e0143541. PubMed ID: 26636338 [TBL] [Abstract][Full Text] [Related]
31. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Wang S; Ghosh AK; Bongio N; Stebbings KA; Lampe DJ; Jacobs-Lorena M Proc Natl Acad Sci U S A; 2012 Jul; 109(31):12734-9. PubMed ID: 22802646 [TBL] [Abstract][Full Text] [Related]
32. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. Boissière A; Tchioffo MT; Bachar D; Abate L; Marie A; Nsango SE; Shahbazkia HR; Awono-Ambene PH; Levashina EA; Christen R; Morlais I PLoS Pathog; 2012; 8(5):e1002742. PubMed ID: 22693451 [TBL] [Abstract][Full Text] [Related]
33. Differential expression of proteins in the midgut of Anopheles albimanus infected with Plasmodium berghei. Serrano-Pinto V; Acosta-Pérez M; Luviano-Bazán D; Hurtado-Sil G; Batista CV; Martínez-Barnetche J; Lánz-Mendoza H Insect Biochem Mol Biol; 2010 Oct; 40(10):752-8. PubMed ID: 20692341 [TBL] [Abstract][Full Text] [Related]
34. Enterobacter-activated mosquito immune responses to Plasmodium involve activation of SRPN6 in Anopheles stephensi. Eappen AG; Smith RC; Jacobs-Lorena M PLoS One; 2013; 8(5):e62937. PubMed ID: 23658788 [TBL] [Abstract][Full Text] [Related]
35. Is Anopheles gambiae a Natural Host of Chrostek E; Gerth M mBio; 2019 Jun; 10(3):. PubMed ID: 31186318 [No Abstract] [Full Text] [Related]
37. Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii. Noden BH; Vaughan JA; Pumpuni CB; Beier JC Parasitol Int; 2011 Dec; 60(4):440-6. PubMed ID: 21763778 [TBL] [Abstract][Full Text] [Related]
38. Emergence of the invasive malaria vector Anopheles stephensi in Khartoum State, Central Sudan. Ahmed A; Khogali R; Elnour MB; Nakao R; Salim B Parasit Vectors; 2021 Oct; 14(1):511. PubMed ID: 34600584 [TBL] [Abstract][Full Text] [Related]
39. A rare sugar, allose, inhibits the development of Mizushima D; Yamamoto DS; Tabbabi A; Arai M; Kato H Front Cell Infect Microbiol; 2023; 13():1162918. PubMed ID: 37545855 [TBL] [Abstract][Full Text] [Related]
40. Anopheles gambiae Croquemort SCRBQ2, expression profile in the mosquito and its potential interaction with the malaria parasite Plasmodium berghei. González-Lázaro M; Dinglasan RR; Hernández-Hernández Fde L; Rodríguez MH; Laclaustra M; Jacobs-Lorena M; Flores-Romo L Insect Biochem Mol Biol; 2009; 39(5-6):395-402. PubMed ID: 19366631 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]