BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30297797)

  • 1. Structural insights into the electron/proton transfer pathways in the quinol:fumarate reductase from Desulfovibrio gigas.
    Guan HH; Hsieh YC; Lin PJ; Huang YC; Yoshimura M; Chen LY; Chen SK; Chuankhayan P; Lin CC; Chen NC; Nakagawa A; Chan SI; Chen CJ
    Sci Rep; 2018 Oct; 8(1):14935. PubMed ID: 30297797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wolinella succinogenes quinol:fumarate reductase-2.2-A resolution crystal structure and the E-pathway hypothesis of coupled transmembrane proton and electron transfer.
    Lancaster CR
    Biochim Biophys Acta; 2002 Oct; 1565(2):215-31. PubMed ID: 12409197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Succinate: quinone oxidoreductases: new insights from X-ray crystal structures.
    Lancaster CR; Kröger A
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):422-31. PubMed ID: 11004459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The di-heme family of respiratory complex II enzymes.
    Lancaster CR
    Biochim Biophys Acta; 2013 May; 1827(5):679-87. PubMed ID: 23466335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroneutral and electrogenic catalysis by dihaem-containing succinate:quinone oxidoreductases.
    Lancaster CR; Herzog E; Juhnke HD; Madej MG; Müller FG; Paul R; Schleidt PG
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):996-1000. PubMed ID: 18793177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited reversibility of transmembrane proton transfer assisting transmembrane electron transfer in a dihaem-containing succinate:quinone oxidoreductase.
    Madej MG; Müller FG; Ploch J; Lancaster CR
    Biochim Biophys Acta; 2009 Jun; 1787(6):593-600. PubMed ID: 19254686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wolinella succinogenes quinol:fumarate reductase and its comparison to E. coli succinate:quinone reductase.
    Lancaster CR
    FEBS Lett; 2003 Nov; 555(1):21-8. PubMed ID: 14630313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Succinate:quinone oxidoreductases--what can we learn from Wolinella succinogenes quinol:fumarate reductase?
    Lancaster CR
    FEBS Lett; 2001 Aug; 504(3):133-41. PubMed ID: 11532445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing heme propionate involvement in transmembrane proton transfer coupled to electron transfer in dihemic quinol:fumarate reductase by 13C-labeling and FTIR difference spectroscopy.
    Mileni M; Haas AH; Mäntele W; Simon J; Lancaster CR
    Biochemistry; 2005 Dec; 44(50):16718-28. PubMed ID: 16342962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential role of Glu-C66 for menaquinol oxidation indicates transmembrane electrochemical potential generation by Wolinella succinogenes fumarate reductase.
    Lancaster CR; Gorss R; Haas A; Ritter M; Mäntele W; Simon J; Kröger A
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13051-6. PubMed ID: 11186225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for transmembrane proton transfer in a dihaem-containing membrane protein complex.
    Madej MG; Nasiri HR; Hilgendorff NS; Schwalbe H; Lancaster CR
    EMBO J; 2006 Oct; 25(20):4963-70. PubMed ID: 17024183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A third crystal form of Wolinella succinogenes quinol:fumarate reductase reveals domain closure at the site of fumarate reduction.
    Lancaster CR; Gross R; Simon J
    Eur J Biochem; 2001 Mar; 268(6):1820-7. PubMed ID: 11248702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic studies of the Escherichia coli quinol-fumarate reductase with inhibitors bound to the quinol-binding site.
    Iverson TM; Luna-Chavez C; Croal LR; Cecchini G; Rees DC
    J Biol Chem; 2002 May; 277(18):16124-30. PubMed ID: 11850430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution.
    Lancaster CR; Kröger A; Auer M; Michel H
    Nature; 1999 Nov; 402(6760):377-85. PubMed ID: 10586875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The quinol:fumarate oxidoreductase from the sulphate reducing bacterium Desulfovibrio gigas: spectroscopic and redox studies.
    Lemos RS; Gomes CM; LeGall J; Xavier AV; Teixeira M
    J Bioenerg Biomembr; 2002 Feb; 34(1):21-30. PubMed ID: 11860177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental support for the "E pathway hypothesis" of coupled transmembrane e- and H+ transfer in dihemic quinol:fumarate reductase.
    Lancaster CR; Sauer US; Gross R; Haas AH; Graf J; Schwalbe H; Mäntele W; Simon J; Madej MG
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):18860-5. PubMed ID: 16380425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculated coupling of transmembrane electron and proton transfer in dihemic quinol:fumarate reductase.
    Haas AH; Lancaster CR
    Biophys J; 2004 Dec; 87(6):4298-315. PubMed ID: 15361415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress on obtaining theoretical and experimental support for the "E-pathway hypothesis" of coupled transmembrane electron and proton transfer in dihaem-containing quinol:fumarate reductase.
    Lancaster CR; Haas AH; Madej MG; Mileni M
    Biochim Biophys Acta; 2006 Aug; 1757(8):988-95. PubMed ID: 16790236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental evidence for proton motive force-dependent catalysis by the diheme-containing succinate:menaquinone oxidoreductase from the Gram-positive bacterium Bacillus licheniformis.
    Madej MG; Nasiri HR; Hilgendorff NS; Schwalbe H; Unden G; Lancaster CR
    Biochemistry; 2006 Dec; 45(50):15049-55. PubMed ID: 17154542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and biochemical analyses reveal insights into covalent flavinylation of the
    Starbird CA; Maklashina E; Sharma P; Qualls-Histed S; Cecchini G; Iverson TM
    J Biol Chem; 2017 Aug; 292(31):12921-12933. PubMed ID: 28615448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.