These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

696 related articles for article (PubMed ID: 30297904)

  • 1. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice.
    Villiger L; Grisch-Chan HM; Lindsay H; Ringnalda F; Pogliano CB; Allegri G; Fingerhut R; Häberle J; Matos J; Robinson MD; Thöny B; Schwank G
    Nat Med; 2018 Oct; 24(10):1519-1525. PubMed ID: 30297904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of an adeno-associated virus serotype Anc80 to provide durable cure of phenylketonuria in a mouse model.
    Kaiser RA; Weber ND; Trigueros-Motos L; Allen KL; Martinez M; Cao W; VanLith CJ; Hillin LG; Douar A; González-Aseguinolaza G; Aldabe R; Lillegard JB
    J Inherit Metab Dis; 2021 Nov; 44(6):1369-1381. PubMed ID: 33896013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria.
    Harding CO; Gillingham MB; Hamman K; Clark H; Goebel-Daghighi E; Bird A; Koeberl DD
    Gene Ther; 2006 Mar; 13(5):457-62. PubMed ID: 16319949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel Pah-exon1 deleted murine model of phenylalanine hydroxylase (PAH) deficiency.
    Richards DY; Winn SR; Dudley S; Fedorov L; Rimann N; Thöny B; Harding CO
    Mol Genet Metab; 2020 Nov; 131(3):306-315. PubMed ID: 33051130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State-of-the-Art 2019 on Gene Therapy for Phenylketonuria.
    Grisch-Chan HM; Schwank G; Harding CO; Thöny B
    Hum Gene Ther; 2019 Oct; 30(10):1274-1283. PubMed ID: 31364419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced genome editing to ameliorate a genetic metabolic liver disease through co-delivery of adeno-associated virus receptor.
    Yin S; Ma L; Shao T; Zhang M; Guan Y; Wang L; Hu Y; Chen X; Han H; Shen N; Qiu W; Geng H; Yu Y; Li S; Yu W; Liu M; Li D
    Sci China Life Sci; 2022 Apr; 65(4):718-730. PubMed ID: 32815069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction of murine PKU following AAV-mediated intramuscular expression of a complete phenylalanine hydroxylating system.
    Ding Z; Harding CO; Rebuffat A; Elzaouk L; Wolff JA; Thöny B
    Mol Ther; 2008 Apr; 16(4):673-81. PubMed ID: 18362925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo prime editing of a metabolic liver disease in mice.
    Böck D; Rothgangl T; Villiger L; Schmidheini L; Matsushita M; Mathis N; Ioannidi E; Rimann N; Grisch-Chan HM; Kreutzer S; Kontarakis Z; Kopf M; Thöny B; Schwank G
    Sci Transl Med; 2022 Mar; 14(636):eabl9238. PubMed ID: 35294257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term correction of hyperphenylalaninemia by AAV-mediated gene transfer leads to behavioral recovery in phenylketonuria mice.
    Mochizuki S; Mizukami H; Ogura T; Kure S; Ichinohe A; Kojima K; Matsubara Y; Kobayahi E; Okada T; Hoshika A; Ozawa K; Kume A
    Gene Ther; 2004 Jul; 11(13):1081-6. PubMed ID: 15057263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term enzymatic and phenotypic correction in the phenylketonuria mouse model by adeno-associated virus vector-mediated gene transfer.
    Oh HJ; Park ES; Kang S; Jo I; Jung SC
    Pediatr Res; 2004 Aug; 56(2):278-84. PubMed ID: 15181195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Administration-route and gender-independent long-term therapeutic correction of phenylketonuria (PKU) in a mouse model by recombinant adeno-associated virus 8 pseudotyped vector-mediated gene transfer.
    Ding Z; Georgiev P; Thöny B
    Gene Ther; 2006 Apr; 13(7):587-93. PubMed ID: 16319947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing.
    Koppes EA; Redel BK; Johnson MA; Skvorak KJ; Ghaloul-Gonzalez L; Yates ME; Lewis DW; Gollin SM; Wu YL; Christ SE; Yerle M; Leshinski A; Spate LD; Benne JA; Murphy SL; Samuel MS; Walters EM; Hansen SA; Wells KD; Lichter-Konecki U; Wagner RA; Newsome JT; Dobrowolski SF; Vockley J; Prather RS; Nicholls RD
    JCI Insight; 2020 Oct; 5(20):. PubMed ID: 33055427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatocytes from wild-type or heterozygous donors are equally effective in achieving successful therapeutic liver repopulation in murine phenylketonuria (PKU).
    Hamman KJ; Winn SR; Harding CO
    Mol Genet Metab; 2011 Nov; 104(3):235-40. PubMed ID: 21917493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient in vivo prime editing corrects the most frequent phenylketonuria variant, associated with high unmet medical need.
    Brooks DL; Whittaker MN; Qu P; Musunuru K; Ahrens-Nicklas RC; Wang X
    Am J Hum Genet; 2023 Dec; 110(12):2003-2014. PubMed ID: 37924808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A base editing strategy using mRNA-LNPs for in vivo correction of the most frequent phenylketonuria variant.
    Brooks DL; Whittaker MN; Said H; Dwivedi G; Qu P; Musunuru K; Ahrens-Nicklas RC; Alameh MG; Wang X
    HGG Adv; 2024 Jan; 5(1):100253. PubMed ID: 37922902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood phenylalanine reduction reverses gene expression changes observed in a mouse model of phenylketonuria.
    Manek R; Zhang YV; Berthelette P; Hossain M; Cornell CS; Gans J; Anarat-Cappillino G; Geller S; Jackson R; Yu D; Singh K; Ryan S; Bangari DS; Xu EY; Kyostio-Moore SRM
    Sci Rep; 2021 Nov; 11(1):22886. PubMed ID: 34819582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and definitive treatment of phenylketonuria in variant-humanized mice with corrective editing.
    Brooks DL; Carrasco MJ; Qu P; Peranteau WH; Ahrens-Nicklas RC; Musunuru K; Alameh MG; Wang X
    Nat Commun; 2023 Jun; 14(1):3451. PubMed ID: 37301931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bone mineralization defect in the Pah
    Dobrowolski SF; Tourkova IL; Robinson LJ; Secunda C; Spridik K; Blair HC
    Mol Genet Metab; 2018 Nov; 125(3):193-199. PubMed ID: 30201326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA methylation in the pathophysiology of hyperphenylalaninemia in the PAH(enu2) mouse model of phenylketonuria.
    Dobrowolski SF; Lyons-Weiler J; Spridik K; Vockley J; Skvorak K; Biery A
    Mol Genet Metab; 2016 Sep; 119(1-2):1-7. PubMed ID: 26822703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Editing Successfully Corrects 2 Amino Acid Disorders: In 2 preclinical studies using CRISPR-mediated gene editing, phenylketonuria and hereditary tyrosinemia type 1 were corrected.
    Am J Med Genet A; 2019 Jan; 179(1):5-6. PubMed ID: 30681273
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 35.