These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 30298238)

  • 1. Neural correlates of proactive and reactive inhibition of saccadic eye movements.
    Talanow T; Kasparbauer AM; Lippold JV; Weber B; Ettinger U
    Brain Imaging Behav; 2020 Feb; 14(1):72-88. PubMed ID: 30298238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural processes associated with antisaccade task performance investigated with event-related FMRI.
    Ford KA; Goltz HC; Brown MR; Everling S
    J Neurophysiol; 2005 Jul; 94(1):429-40. PubMed ID: 15728770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facing competition: Neural mechanisms underlying parallel programming of antisaccades and prosaccades.
    Talanow T; Kasparbauer AM; Steffens M; Meyhöfer I; Weber B; Smyrnis N; Ettinger U
    Brain Cogn; 2016 Aug; 107():37-47. PubMed ID: 27363008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.
    Pierce JE; McDowell JE
    J Neurophysiol; 2016 Feb; 115(2):763-72. PubMed ID: 26609113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials.
    Brown MR; Goltz HC; Vilis T; Ford KA; Everling S
    Neuroimage; 2006 Nov; 33(2):644-59. PubMed ID: 16949303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposing the neural correlates of antisaccade eye movements using event-related FMRI.
    Ettinger U; Ffytche DH; Kumari V; Kathmann N; Reuter B; Zelaya F; Williams SC
    Cereb Cortex; 2008 May; 18(5):1148-59. PubMed ID: 17728263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cognitive Control of Saccadic Selection and Inhibition from within the Core Cortical Saccadic Network.
    Jarvstad A; Gilchrist ID
    J Neurosci; 2019 Mar; 39(13):2497-2508. PubMed ID: 30683684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging the effects of age on proactive control in healthy adults.
    Hu S; Job M; Jenks SK; Chao HH; Li CR
    Brain Imaging Behav; 2019 Dec; 13(6):1526-1537. PubMed ID: 31011949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neural network of saccadic foreknowledge.
    Bär S; Hauf M; Barton J; Abegg M
    Exp Brain Res; 2016 Feb; 234(2):409-18. PubMed ID: 26497988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral blood flow modulations during preparatory attention and proactive inhibition.
    Duschek S; Hoffmann A; Montoro CI; Reyes Del Paso GA; Schuepbach D; Ettinger U
    Biol Psychol; 2018 Sep; 137():65-72. PubMed ID: 30006269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of aging on BOLD fMRI during prosaccades and antisaccades.
    Raemaekers M; Vink M; van den Heuvel MP; Kahn RS; Ramsey NF
    J Cogn Neurosci; 2006 Apr; 18(4):594-603. PubMed ID: 16768362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral blood flow responses during prosaccade and antisaccade preparation in major depression.
    Hoffmann A; Ettinger U; Montoro C; Reyes Del Paso GA; Duschek S
    Eur Arch Psychiatry Clin Neurosci; 2019 Oct; 269(7):813-822. PubMed ID: 30421150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task-switching with antisaccades versus no-go trials: a comparison of inter-trial effects.
    Barton JJ; Raoof M; Jameel O; Manoach DS
    Exp Brain Res; 2006 Jun; 172(1):114-9. PubMed ID: 16369785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct functional properties of the vertical and horizontal saccadic network in Health and Parkinson's disease: An eye-tracking and fMRI study.
    Lemos J; Pereira D; Almendra L; Rebelo D; Patrício M; Castelhano J; Cunha G; Januário C; Cunha L; Freire A; Castelo-Branco M
    Brain Res; 2016 Oct; 1648(Pt A):469-484. PubMed ID: 27545665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects.
    Kimmig H; Greenlee MW; Gondan M; Schira M; Kassubek J; Mergner T
    Exp Brain Res; 2001 Nov; 141(2):184-94. PubMed ID: 11713630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional MRI mapping of brain activation during visually guided saccades and antisaccades: cortical and subcortical networks.
    Matsuda T; Matsuura M; Ohkubo T; Ohkubo H; Matsushima E; Inoue K; Taira M; Kojima T
    Psychiatry Res; 2004 Jul; 131(2):147-55. PubMed ID: 15313521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of right inferior frontal gyrus during response inhibition across response modalities.
    Chikazoe J; Konishi S; Asari T; Jimura K; Miyashita Y
    J Cogn Neurosci; 2007 Jan; 19(1):69-80. PubMed ID: 17214564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontoparietal activation with preparation for antisaccades.
    Brown MR; Vilis T; Everling S
    J Neurophysiol; 2007 Sep; 98(3):1751-62. PubMed ID: 17596416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study.
    Marini F; Demeter E; Roberts KC; Chelazzi L; Woldorff MG
    J Neurosci; 2016 Jan; 36(3):988-1000. PubMed ID: 26791226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.