These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30298256)

  • 1. From RNA-seq to Biological Inference: Using Compositional Data Analysis in Meta-Transcriptomics.
    Macklaim JM; Gloor GB
    Methods Mol Biol; 2018; 1849():193-213. PubMed ID: 30298256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species classifier choice is a key consideration when analysing low-complexity food microbiome data.
    Walsh AM; Crispie F; O'Sullivan O; Finnegan L; Claesson MJ; Cotter PD
    Microbiome; 2018 Mar; 6(1):50. PubMed ID: 29554948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple model species selection for transcriptomics analysis of non-model organisms.
    Pai TW; Li KH; Yang CH; Hu CH; Lin HJ; Wang WD; Chen YR
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):284. PubMed ID: 30367568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies.
    Thorsen J; Brejnrod A; Mortensen M; Rasmussen MA; Stokholm J; Al-Soud WA; Sørensen S; Bisgaard H; Waage J
    Microbiome; 2016 Nov; 4(1):62. PubMed ID: 27884206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing a 16S rRNA Sequencing Dataset with the Microbiome Helper Workflow.
    Douglas GM; Comeau AM; Langille MGI
    Methods Mol Biol; 2018; 1849():131-141. PubMed ID: 30298252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the Functional Potential of the Microbiome from Marker Genes Using PICRUSt.
    Douglas GM; Beiko RG; Langille MGI
    Methods Mol Biol; 2018; 1849():169-177. PubMed ID: 30298254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bioinformatics Pipeline for the Identification of CHO Cell Differential Gene Expression from RNA-Seq Data.
    Monger C; Motheramgari K; McSharry J; Barron N; Clarke C
    Methods Mol Biol; 2017; 1603():169-186. PubMed ID: 28493130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normalization of Microbiome Profiling Data.
    McMurdie PJ
    Methods Mol Biol; 2018; 1849():143-168. PubMed ID: 30298253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A differential k-mer analysis pipeline for comparing RNA-Seq transcriptome and meta-transcriptome datasets without a reference.
    Chan CK; Rosic N; Lorenc MT; Visendi P; Lin M; Kaniewska P; Ferguson BJ; Gresshoff PM; Batley J; Edwards D
    Funct Integr Genomics; 2019 Mar; 19(2):363-371. PubMed ID: 30483906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species-level functional profiling of metagenomes and metatranscriptomes.
    Franzosa EA; McIver LJ; Rahnavard G; Thompson LR; Schirmer M; Weingart G; Lipson KS; Knight R; Caporaso JG; Segata N; Huttenhower C
    Nat Methods; 2018 Nov; 15(11):962-968. PubMed ID: 30377376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metagenome Assembly and Contig Assignment.
    Zhang Q
    Methods Mol Biol; 2018; 1849():179-192. PubMed ID: 30298255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetaTrans: an open-source pipeline for metatranscriptomics.
    Martinez X; Pozuelo M; Pascal V; Campos D; Gut I; Gut M; Azpiroz F; Guarner F; Manichanh C
    Sci Rep; 2016 May; 6():26447. PubMed ID: 27211518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome.
    Allali I; Arnold JW; Roach J; Cadenas MB; Butz N; Hassan HM; Koci M; Ballou A; Mendoza M; Ali R; Azcarate-Peril MA
    BMC Microbiol; 2017 Sep; 17(1):194. PubMed ID: 28903732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-Seq-Based Comparative Transcriptomics: RNA Preparation and Bioinformatics.
    Rodríguez-García A; Sola-Landa A; Barreiro C
    Methods Mol Biol; 2017; 1645():59-72. PubMed ID: 28710621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the diversity of the human microbiota with targeted next-generation sequencing.
    Finotello F; Mastrorilli E; Di Camillo B
    Brief Bioinform; 2018 Jul; 19(4):679-692. PubMed ID: 28025179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis: a powerful tool to understand individual microbial behaviors and interactions in ecosystems.
    Sato Y
    Biosci Biotechnol Biochem; 2024 Jul; 88(8):850-856. PubMed ID: 38749545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative bacterial transcriptomics with RNA-seq.
    Creecy JP; Conway T
    Curr Opin Microbiol; 2015 Feb; 23():133-40. PubMed ID: 25483350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of ChIP-Seq and RNA-Seq Data with BioWardrobe.
    Vallabh S; Kartashov AV; Barski A
    Methods Mol Biol; 2018; 1783():343-360. PubMed ID: 29767371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CCLasso: correlation inference for compositional data through Lasso.
    Fang H; Huang C; Zhao H; Deng M
    Bioinformatics; 2015 Oct; 31(19):3172-80. PubMed ID: 26048598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.