These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 30298553)
1. Efficiently activated ε-poly-L-lysine production by multiple antibiotic-resistance mutations and acidic pH shock optimization in Streptomyces albulus. Wang L; Li S; Zhao J; Liu Y; Chen X; Tang L; Mao Z Microbiologyopen; 2019 May; 8(5):e00728. PubMed ID: 30298553 [TBL] [Abstract][Full Text] [Related]
2. Enhanced ε-poly-L-lysine production by inducing double antibiotic-resistant mutations in Streptomyces albulus. Wang L; Chen X; Wu G; Li S; Zeng X; Ren X; Tang L; Mao Z Bioprocess Biosyst Eng; 2017 Feb; 40(2):271-283. PubMed ID: 27807681 [TBL] [Abstract][Full Text] [Related]
3. Genome Shuffling and Gentamicin-Resistance to Improve ε-Poly-L-Lysine Productivity of Streptomyces albulus W-156. Wang L; Chen X; Wu G; Zeng X; Ren X; Li S; Tang L; Mao Z Appl Biochem Biotechnol; 2016 Dec; 180(8):1601-1617. PubMed ID: 27422534 [TBL] [Abstract][Full Text] [Related]
4. Construction of a Genetic System for Streptomyces albulus PD-1 and Improving Poly(ε-L-lysine) Production Through Expression of Vitreoscilla Hemoglobin. Xu Z; Cao C; Sun Z; Li S; Xu Z; Feng X; Xu H J Microbiol Biotechnol; 2015 Nov; 25(11):1819-26. PubMed ID: 26239011 [TBL] [Abstract][Full Text] [Related]
5. Acidic pH shock induced overproduction of ε-poly-L-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products. Ren XD; Chen XS; Zeng X; Wang L; Tang L; Mao ZG Bioprocess Biosyst Eng; 2015 Jun; 38(6):1113-25. PubMed ID: 25605030 [TBL] [Abstract][Full Text] [Related]
6. Combinatorial strain improvement and bioprocess development for efficient production of ε-poly-L-lysine in Streptomyces albulus. Zhu D; Liu Y; Yang H; Zhang J; Zheng G; Zhang H; Wang L; Zhang J; Chen X Bioresour Technol; 2024 Sep; 407():131123. PubMed ID: 39029766 [TBL] [Abstract][Full Text] [Related]
7. Enhanced ε-Poly-L-Lysine Production in Wang L; Yang H; Wu M; Zhang H; Zhang J; Chen X Biomolecules; 2024 Jun; 14(7):. PubMed ID: 39062465 [TBL] [Abstract][Full Text] [Related]
8. Engineering Streptomyces albulus to enhance ε-poly-L-lysine production by introducing a polyphosphate kinase-mediated ATP regeneration system. Yang H; Zhu D; Kai L; Wang L; Zhang H; Zhang J; Chen X Microb Cell Fact; 2023 Mar; 22(1):51. PubMed ID: 36918890 [TBL] [Abstract][Full Text] [Related]
9. Enhanced ε-Poly-L-Lysine Production by the Synergistic Effect of ε-Poly-L-Lysine Synthetase Overexpression and Citrate in Wang A; Tian W; Cheng L; Xu Y; Wang X; Qin J; Yu B Front Bioeng Biotechnol; 2020; 8():288. PubMed ID: 32391338 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of ε-poly-lysine production in ε-poly-lysine-tolerant Streptomyces sp. by genome shuffling. Zhou YP; Ren XD; Wang L; Chen XS; Mao ZG; Tang L Bioprocess Biosyst Eng; 2015 Sep; 38(9):1705-13. PubMed ID: 25969386 [TBL] [Abstract][Full Text] [Related]
11. Understanding high ε-poly-L-lysine production by Streptomyces albulus using pH shock strategy in the level of transcriptomics. Pan L; Chen X; Wang K; Mao Z J Ind Microbiol Biotechnol; 2019 Dec; 46(12):1781-1792. PubMed ID: 31595454 [TBL] [Abstract][Full Text] [Related]
12. Effects of Chromosomal Integration of the Vitreoscilla Hemoglobin Gene (vgb) and S-Adenosylmethionine Synthetase Gene (metK) on ε-Poly-L-Lysine Synthesis in Streptomyces albulus NK660. Gu Y; Wang X; Yang C; Geng W; Feng J; Wang Y; Wang S; Song C Appl Biochem Biotechnol; 2016 Apr; 178(7):1445-57. PubMed ID: 26749294 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of ε-poly-L-lysine production by overexpressing the ammonium transporter gene in Streptomyces albulus PD-1. Xu D; Yao H; Cao C; Xu Z; Li S; Xu Z; Zhou J; Feng X; Xu H Bioprocess Biosyst Eng; 2018 Sep; 41(9):1337-1345. PubMed ID: 29978263 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of ε-poly-L-lysine production by Streptomyces albulus FQF-24 with feeding strategies using cassava starch as carbon source. Li B; Wu C; Bai S; Zhang D; Xu C; Yuan X; Tian J; Bai J; Li L; Fu J Bioprocess Biosyst Eng; 2024 Dec; 47(12):1973-1984. PubMed ID: 39150530 [TBL] [Abstract][Full Text] [Related]
15. Genome shuffling enhanced ε-poly-L-lysine production by improving glucose tolerance of Streptomyces graminearus. Li S; Li F; Chen XS; Wang L; Xu J; Tang L; Mao ZG Appl Biochem Biotechnol; 2012 Jan; 166(2):414-23. PubMed ID: 22083395 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of metabolic flux toward ε-poly-l-lysine biosynthesis by targeted inactivation of concomitant polyene macrolide biosynthesis in Streptomyces albulus. Yamanaka K; Hamano Y; Oikawa T J Biosci Bioeng; 2020 May; 129(5):558-564. PubMed ID: 31924510 [TBL] [Abstract][Full Text] [Related]
17. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans. Geng W; Yang C; Gu Y; Liu R; Guo W; Wang X; Song C; Wang S Microb Biotechnol; 2014 Mar; 7(2):155-64. PubMed ID: 24423427 [TBL] [Abstract][Full Text] [Related]
18. Physiological mechanism of the overproduction of ε-poly-L-lysine by acidic pH shock in fed-batch fermentation. Ren XD; Chen XS; Tang L; Zeng X; Wang L; Mao ZG Bioprocess Biosyst Eng; 2015 Nov; 38(11):2085-94. PubMed ID: 26256021 [TBL] [Abstract][Full Text] [Related]
19. Isolation and characterization of a novel ε-poly-L-lysine producing strain: Streptomyces griseofuscus. Li S; Tang L; Chen X; Liao L; Li F; Mao Z J Ind Microbiol Biotechnol; 2011 Apr; 38(4):557-63. PubMed ID: 20711627 [TBL] [Abstract][Full Text] [Related]
20. Combining genome shuffling and interspecific hybridization among Streptomyces improved ε-poly-L-lysine production. Li S; Chen X; Dong C; Zhao F; Tang L; Mao Z Appl Biochem Biotechnol; 2013 Jan; 169(1):338-50. PubMed ID: 23179278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]